login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000039 Coefficient of q^(2n) in the series expansion of Ramanujan's mock theta function f(q).
(Formerly M0629 N0230)
6
1, -2, -3, -5, -6, -10, -11, -17, -21, -27, -33, -46, -53, -68, -82, -104, -123, -154, -179, -221, -262, -314, -369, -446, -515, -614, -715, -845, -977, -1148, -1321, -1544, -1778, -2060, -2361, -2736, -3121, -3592, -4097, -4696, -5340, -6105, -6916, -7882, -8919, -10123, -11429, -12952, -14580 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

L. A. Dragonette, Some Asymptotic Formulae for the Mock Theta Series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952), 474-500.

Eric Weisstein's World of Mathematics, Mock Theta Function

MATHEMATICA

f[q_, s_] := Sum[q^(n^2)/Product[1+q^k, {k, n}]^2, {n, 0, s}]; Take[CoefficientList[Series[f[q, 100], {q, 0, 100}], q], {1, -1, 2}]

PROG

(PARI) a(n)=if(n<0, 0, polcoeff(1+sum(k=1, sqrtint(2*n), x^k^2/prod(i=1, k, 1+x^i, 1+O(x^(2*n)))^2), 2*n))

CROSSREFS

A000025(2n)=a(n). Cf. A000199.

Sequence in context: A130714 A130689 A024560 * A302600 A053436 A057546

Adjacent sequences:  A000036 A000037 A000038 * A000040 A000041 A000042

KEYWORD

sign

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 25 07:55 EDT 2018. Contains 311891 sequences. (Running on oeis4.)