OFFSET
1,2
COMMENTS
Alternative name: Number of integer partitions of n with a part divisible by and a part dividing all the other parts. With this definition we have a(0) = 1. - Gus Wiseman, Apr 18 2021
FORMULA
G.f.: Sum_{i>=0} Sum_(j>0} x^(j+i*j)/Product_{k|i} (1-x^(j*k)).
EXAMPLE
From Gus Wiseman, Apr 18 2021: (Start)
The a(1) = 1 though a(8) = 16 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (331) (62)
(211) (311) (51) (421) (71)
(1111) (2111) (222) (511) (422)
(11111) (411) (2221) (611)
(2211) (4111) (2222)
(3111) (22111) (3311)
(21111) (31111) (4211)
(111111) (211111) (5111)
(1111111) (22211)
(41111)
(221111)
(311111)
(2111111)
(11111111)
(End)
MAPLE
A130714 := proc(n) local gf, den, i, k, j ; gf := 0 ; for i from 0 to n do for j from 1 to n/(1+i) do den := 1 ; for k in numtheory[divisors](i) do den := den*(1-x^(j*k)) ; od ; gf := taylor(gf+x^(j+i*j)/den, x=0, n+1) ; od ; od: coeftayl(gf, x=0, n) ; end: seq(A130714(n), n=1..60) ; # R. J. Mathar, Oct 28 2007
MATHEMATICA
Table[If[n==0, 1, Length[Select[IntegerPartitions[n], And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]]], {n, 0, 30}] (* Gus Wiseman, Apr 18 2021 *)
CROSSREFS
The second condition alone gives A083710.
The first condition alone gives A130689.
The opposite version is A343342.
The Heinz numbers of these partitions are the complement of A343343.
The complement is counted by A343346.
The strict case is A343378.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 02 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 28 2007
STATUS
approved