login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A130711
Number of compositions of n such that the smallest part divides every part.
0
1, 2, 4, 8, 14, 32, 57, 123, 239, 493, 970, 1997, 3953, 8017, 16024, 32281, 64550, 129742, 259561, 520606, 1041871, 2087177, 4176594, 8362063, 16730862, 33483361, 66987710, 134029333, 268117646, 536373213, 1072909785, 2146169660
OFFSET
1,2
FORMULA
Inverse Moebius transform of A099036.
G.f.: Sum_{n>0} x^n*(1-x^n)^2/((1-2*x^n)*(1-x^n-x^(2*n))).
EXAMPLE
a(5)=14 because among the 16 compositions of 5 only 2+3 and 3+2 do not qualify; the others, except for the composition 5, have at least one component equal to 1.
MAPLE
G:=sum(x^n*(1-x^n)^2/((1-2*x^n)*(1-x^n-x^(2*n))), n=1..50); Gser:=series(G, x =0, 40): seq(coeff(Gser, x, n), n=1..33); # Emeric Deutsch, Sep 08 2007
CROSSREFS
Cf. A083710.
Sequence in context: A038024 A337500 A061297 * A355189 A093483 A028398
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 01 2007
EXTENSIONS
More terms from Emeric Deutsch, Sep 08 2007
STATUS
approved