login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130713
a(0)=a(2)=1, a(1)=2, a(n)=0 for n > 2.
3
1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Self-convolution of A019590. Up to a sign the convolutional inverse of the natural numbers sequence. - Tanya Khovanova, Jul 14 2007
Iterated partial sums give the chain A130713 -> A113311 -> A008574 -> A001844 -> A005900 -> A006325 -> A033455 -> A259181, up to index. The k-th term of the n-th partial sums is (n^2-7n+14 + 4k(k+n-4))(k+n-4)!/(k-1)!/(n-1)!, for k > 3-n. Iterating partial sums in reverse (n-th differences with n zeros prepended) gives row (n+3) of A182533, modulo signs and trailing zeros. - Travis Scott, Feb 19 2023
LINKS
Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
FORMULA
G.f.: 1 + 2*x + x^2.
a(n) = binomial(2n, n^2). - Wesley Ivan Hurt, Mar 08 2014
MAPLE
A130713:=n->binomial(2*n, n^2); seq(A130713(n), n=0..100); # Wesley Ivan Hurt, Mar 08 2014
MATHEMATICA
Table[Binomial[2 n, n^2], {n, 0, 100}] (* Wesley Ivan Hurt, Mar 08 2014 *)
CROSSREFS
Sequence in context: A066288 A033322 A329679 * A236619 A355627 A300828
KEYWORD
easy,nonn
AUTHOR
Paul Curtz and Tanya Khovanova, Jul 01 2007
STATUS
approved