login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033455
Convolution of nonzero squares A000290 with themselves.
16
1, 8, 34, 104, 259, 560, 1092, 1968, 3333, 5368, 8294, 12376, 17927, 25312, 34952, 47328, 62985, 82536, 106666, 136136, 171787, 214544, 265420, 325520, 396045, 478296, 573678, 683704, 809999, 954304, 1118480, 1304512, 1514513, 1750728, 2015538, 2311464
OFFSET
1,2
COMMENTS
Total area of all square regions from an n X n grid. E.g., at n = 3, there are nine individual squares, four 2 X 2's and one 3 X 3, total area 9 + 16 + 9 = 34, hence a(3) = 34. - Jon Perry, Jul 29 2003
If X is an n-set and Y and Z disjoint 2-subsets of X then a(n) is equal to the number of 7-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
Every fourth term is odd. However, there are no primes in the sequence. - Zak Seidov, Feb 28 2011
-120*a(n) is the real part of (n + n*i)*(n + 2 + n*i)*(n + (n + 2)i)*(n + 2+(n + 2)*i)*(n + 1 + (n + 1)*i), where i = sqrt(-1). - Jon Perry, Feb 05 2014
The previous formula rephrases the factorization of the 5th-order polynomial a(n) = (n+1)*((n+1)^4-1) = (n+1)*A123864(n+1) based on the factorization in A123865. - R. J. Mathar, Feb 08 2014
LINKS
Abderrahim Arabi, Hacène Belbachir, Jean-Philippe Dubernard, Plateau Polycubes and Lateral Area, arXiv:1811.05707 [math.CO], 2018. See Column 1 Table 1 p. 8.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 2. - N. J. A. Sloane, Mar 23 2014
FORMULA
a(n-1) = n*(n^4 - 1)/30 = A061167(n)/30. - Henry Bottomley, Apr 18 2001
G.f.: x*(1+x)^2/(1-x)^6. - Philippe Deléham, Feb 21 2012
a(n) = Sum_{k=1..n+1} k^2*(n+1-k)^2. - Kolosov Petro, Feb 07 2019
E.g.f.: x*(30 +90*x +65*x^2 +15*x^3 +x^4)*exp(x)/30. - G. C. Greubel, Jul 05 2019
MATHEMATICA
Table[(n^5 - n)/30, {n, 2, 41}] (* Vladimir Joseph Stephan Orlovsky, Feb 28 2011 *)
CoefficientList[Series[(1+x)^2/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
PROG
(Magma) [(n^5-n)/30: n in [2..41]]; // Vincenzo Librandi, Mar 24 2014
(PARI) vector(40, n, ((n+1)^5 -n-1)/30) \\ G. C. Greubel, Jul 05 2019
(Sage) [((n+1)^5 -n-1)/30 for n in (1..40)] # G. C. Greubel, Jul 05 2019
(GAP) List([1..40], n-> ((n+1)^5 -(n+1))/30) # G. C. Greubel, Jul 05 2019
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Mar 24 2014
STATUS
approved