|
|
A061167
|
|
a(n) = n^5 - n.
|
|
8
|
|
|
0, 0, 30, 240, 1020, 3120, 7770, 16800, 32760, 59040, 99990, 161040, 248820, 371280, 537810, 759360, 1048560, 1419840, 1889550, 2476080, 3199980, 4084080, 5153610, 6436320, 7962600, 9765600, 11881350, 14348880, 17210340, 20511120, 24299970, 28629120
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
(b^2+c^2)/(bc+1) is an integer if {b,c} are of the form {0,n}, {n,n^3}, {n^3,n^5-n}, {n^5-n,n^7-2n^3}, {n^7-2n^3,n^9-3n^5+n}, etc. for some n, in which case the division results in n^2. Cf. A052530.
Convolution of A033429 by A033581. - R. J. Mathar, Aug 19 2008
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
D. Zagier, Problems posed at the St Andrews Colloquium, 1996
|
|
FORMULA
|
a(n) = A033455(n+2)*30 = -n*A024002(n) = A000584(n) - n.
O.g.f.: 30x^2(1+x)^2/(1-x)^6. - R. J. Mathar, Aug 19 2008
|
|
EXAMPLE
|
a(2) = 32 - 2 = 30.
|
|
MATHEMATICA
|
Table[n^5 - n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
|
|
PROG
|
(MAGMA) [n^5-n: n in [0..40]]; // Vincenzo Librandi, May 02 2011
|
|
CROSSREFS
|
Sequence in context: A081779 A069487 A008385 * A189495 A138404 A136381
Adjacent sequences: A061164 A061165 A061166 * A061168 A061169 A061170
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Henry Bottomley, Apr 18 2001
|
|
STATUS
|
approved
|
|
|
|