login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061168
Partial sums of floor(log_2(k)) (= A000523(k)).
14
0, 1, 2, 4, 6, 8, 10, 13, 16, 19, 22, 25, 28, 31, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 148, 153, 158, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 213, 218, 223, 228, 233, 238, 243, 248
OFFSET
1,3
COMMENTS
Given a term b>0 of the sequence and its left hand neighbor c, the corresponding unique sequence index n with property a(n)=b can be determined by n(b)=e+(b-d*(e+1)+2*(e-1))/d, where d=b-c and e=2^d. - Hieronymus Fischer, Dec 05 2006
a(n) gives index of start of binary expansion of n in the binary Champernowne sequence A076478. - N. J. A. Sloane, Dec 14 2017
a(n) is the number of pairs in ancestor relationship (= transitive closure of the parent relationship) in all (binary) heaps on n elements. - Alois P. Heinz, Feb 13 2019
REFERENCES
D. E. Knuth, Fundamental Algorithms, Addison-Wesley, 1973, Section 1.2.4, ex. 42(b).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197, ex. 27.
Sung-Hyuk Cha, On Integer Sequences Derived from Balanced k-ary Trees, Applied Mathematics in Electrical and Computer Engineering, 2012.
Sung-Hyuk Cha, On Complete and Size Balanced k-ary Tree Integer Sequences, International Journal of Applied Mathematics and Informatics, Issue 2, Volume 6, 2012, pp. 67-75.
M. Griffiths, More sums involving the floor function, Math. Gaz., 86 (2002), 285-287.
Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.
Tamás Lengyel, On the 2-Adic Valuation of Differences of Harmonic Numbers, Integers (2024) Vol. 24, A27. See p. 8.
Eric Weisstein's World of Mathematics, Heap
Wikipedia, Binary heap
FORMULA
a(n) = A001855(n+1) - n.
a(n) = Sum_{k=1..n} floor(log_2(k)) = (n+1)*floor(log_2(n)) - 2*(2^floor(log_2(n)) - 1). - Diego Torres (torresvillarroel(AT)hotmail.com), Oct 29 2002
G.f.: 1/(1-x)^2 * Sum(k>=1, x^2^k). - Ralf Stephan, Apr 13 2002
a(n) = A123753(n) - 2*n - 1. - Peter Luschny, Nov 30 2017
MAPLE
seq(add(floor(log[2](k)), k=1..j), j=1..100);
# second Maple program:
a:= proc(n) option remember; `if`(n<1, 0, ilog2(n)+a(n-1)) end:
seq(a(n), n=1..80); # Alois P. Heinz, Feb 12 2019
MATHEMATICA
Accumulate[Floor[Log[2, Range[110]]]] (* Harvey P. Dale, Jul 16 2012 *)
a[n_] := (n+1) IntegerLength[n+1, 2] - 2^IntegerLength[n+1, 2] - n + 1;
Table[a[n], {n, 1, 61}] (* Peter Luschny, Dec 02 2017 *)
PROG
(PARI) a(n)=if(n<1, 0, if(n%2==0, a(n/2)+a(n/2-1)+n-1, 2*a((n-1)/2)+n-1)) /* _Ralf Stephan */
(PARI) a(n)=local(k); if(n<1, 0, k=length(binary(n))-1; (n+1)*k-2*(2^k-1))
(PARI) { for (n=1, 1000, k=length(binary(n))-1; write("b061168.txt", n, " ", (n + 1)*k - 2*(2^k - 1)) ) } \\ Harry J. Smith, Jul 18 2009
(Haskell)
import Data.List (transpose)
a061168 n = a061168_list !! n
a061168_list = zipWith (+) [0..] (zipWith (+) hs $ tail hs) where
hs = concat $ transpose [a001855_list, a001855_list]
-- Reinhard Zumkeller, Jun 03 2013
(Python)
def A061168(n):
s, i, z = -n , n, 1
while 0 <= i: s += i; i -= z; z += z
return s
print([A061168(n) for n in range(1, 62)]) # Peter Luschny, Nov 30 2017
(Python)
def A061168(n): return (n+1)*((m:=n.bit_length())-1)-(1<<m)+2 # Chai Wah Wu, Mar 29 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Apr 19 2001
STATUS
approved