login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123864
Expansion of (eta(q^3) * eta(q^5))^2 / (eta(q) * eta(q^15)) in powers of q.
4
1, 1, 2, 1, 3, 1, 2, 0, 4, 1, 2, 0, 3, 0, 0, 1, 5, 2, 2, 2, 3, 0, 0, 2, 4, 1, 0, 1, 0, 0, 2, 2, 6, 0, 4, 0, 3, 0, 4, 0, 4, 0, 0, 0, 0, 1, 4, 2, 5, 1, 2, 2, 0, 2, 2, 0, 0, 2, 0, 0, 3, 2, 4, 0, 7, 0, 0, 0, 6, 2, 0, 0, 4, 0, 0, 1, 6, 0, 0, 2, 5, 1, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 6, 2, 4, 2, 6, 0, 2, 0, 3, 0, 4, 0, 0
OFFSET
0,3
COMMENTS
Number 31 of the 74 eta-quotients listed in Table I of Martin (1996).
Multiplicative because this sequence is the inverse Moebius transform of a multiplicative sequence Kronecker(-15, n). - Andrew Howroyd, Jul 27 2018
LINKS
Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
FORMULA
Euler transform of period 15 sequence [ 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -2, ...].
Moebius transform is period 15 sequence [ 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, ...].
G.f. A(q) satisfies 0 = f(A(q), A(q^2), A(q^4)) where f(u, v, w) = - v^3 + 4*u*v*w - 2*u*w^2 - u^2*w.
G.f.: Product_{k>0} ((1 - x^(3*k)) * (1 - x^(5*k)))^2 / ((1 - x^k) * (1 - x^(15*k))).
G.f.: (1/2) * (Sum_{n,m in Z} x^(n^2 + n*m + 4*m^2) + x^(2*n^2 + n*m + 2*m^2)).
a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0. a(3*n) = a(n).
a(n) = A035175(n) unless n=0. a(n) = |A106406(n)| unless n=0.
G.f. is a period 1 Fourier series which satisfies f(-1 / (15 t)) = 15^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Feb 10 2015
a(n) = Sum_{d | n} Kronecker(-15, d). - Andrew Howroyd, Jul 27 2018
From Amiram Eldar, Feb 20 2024: (Start)
Multiplicative with a(p^e) = 1 if p = 3 or 5, e + 1 if Kronecker(-15, p) = 1, and 1 - (e mod 2) if Kronecker(-15, p) = -1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(15). (End)
EXAMPLE
G.f. = 1 + q + 2*q^2 + q^3 + 3*q^4 + q^5 + 2*q^6 + 4*q^8 + q^9 + 2*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3] QPochhammer[ q^5])^2 / ( QPochhammer[ q] QPochhammer[ q^15]), {q, 0, n}]; (* Michael Somos, Feb 10 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], Sum[ KroneckerSymbol[ -15, d], { d, Divisors[ n]}]]; (* Michael Somos, Feb 10 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -15, d)))};
(PARI) {a(n) = if( n<1, n==0, (qfrep( [2, 1; 1, 8], n, 1) + qfrep( [4, 1; 1, 4], n, 1))[n])};
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^5 + A))^2 / (eta(x + A) * eta(x^15 + A)), n))};
(Magma) A := Basis( ModularForms( Gamma1(15), 1), 106); A[1] + A[2] + 2*A[3] + A[4] + 3*A[5] + A[6] + 2*A[7]; /* Michael Somos, Feb 10 2015 */
CROSSREFS
Sequence in context: A156248 A324817 A106406 * A035175 A092412 A265578
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Oct 14 2006
STATUS
approved