OFFSET
0,3
COMMENTS
Number 31 of the 74 eta-quotients listed in Table I of Martin (1996).
Multiplicative because this sequence is the inverse Moebius transform of a multiplicative sequence Kronecker(-15, n). - Andrew Howroyd, Jul 27 2018
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers, 2016.
FORMULA
Euler transform of period 15 sequence [ 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -2, ...].
Moebius transform is period 15 sequence [ 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, ...].
G.f. A(q) satisfies 0 = f(A(q), A(q^2), A(q^4)) where f(u, v, w) = - v^3 + 4*u*v*w - 2*u*w^2 - u^2*w.
G.f.: Product_{k>0} ((1 - x^(3*k)) * (1 - x^(5*k)))^2 / ((1 - x^k) * (1 - x^(15*k))).
G.f.: (1/2) * (Sum_{n,m in Z} x^(n^2 + n*m + 4*m^2) + x^(2*n^2 + n*m + 2*m^2)).
a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0. a(3*n) = a(n).
G.f. is a period 1 Fourier series which satisfies f(-1 / (15 t)) = 15^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Feb 10 2015
a(n) = Sum_{d | n} Kronecker(-15, d). - Andrew Howroyd, Jul 27 2018
From Amiram Eldar, Feb 20 2024: (Start)
Multiplicative with a(p^e) = 1 if p = 3 or 5, e + 1 if Kronecker(-15, p) = 1, and 1 - (e mod 2) if Kronecker(-15, p) = -1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(15). (End)
EXAMPLE
G.f. = 1 + q + 2*q^2 + q^3 + 3*q^4 + q^5 + 2*q^6 + 4*q^8 + q^9 + 2*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3] QPochhammer[ q^5])^2 / ( QPochhammer[ q] QPochhammer[ q^15]), {q, 0, n}]; (* Michael Somos, Feb 10 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], Sum[ KroneckerSymbol[ -15, d], { d, Divisors[ n]}]]; (* Michael Somos, Feb 10 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -15, d)))};
(PARI) {a(n) = if( n<1, n==0, (qfrep( [2, 1; 1, 8], n, 1) + qfrep( [4, 1; 1, 4], n, 1))[n])};
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^5 + A))^2 / (eta(x + A) * eta(x^15 + A)), n))};
(Magma) A := Basis( ModularForms( Gamma1(15), 1), 106); A[1] + A[2] + 2*A[3] + A[4] + 3*A[5] + A[6] + 2*A[7]; /* Michael Somos, Feb 10 2015 */
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Oct 14 2006
STATUS
approved