Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Feb 20 2024 02:19:20
%S 1,1,2,1,3,1,2,0,4,1,2,0,3,0,0,1,5,2,2,2,3,0,0,2,4,1,0,1,0,0,2,2,6,0,
%T 4,0,3,0,4,0,4,0,0,0,0,1,4,2,5,1,2,2,0,2,2,0,0,2,0,0,3,2,4,0,7,0,0,0,
%U 6,2,0,0,4,0,0,1,6,0,0,2,5,1,0,2,0,2,0,0,0,0,2,0,6,2,4,2,6,0,2,0,3,0,4,0,0
%N Expansion of (eta(q^3) * eta(q^5))^2 / (eta(q) * eta(q^15)) in powers of q.
%C Number 31 of the 74 eta-quotients listed in Table I of Martin (1996).
%C Multiplicative because this sequence is the inverse Moebius transform of a multiplicative sequence Kronecker(-15, n). - _Andrew Howroyd_, Jul 27 2018
%H Andrew Howroyd, <a href="/A123864/b123864.txt">Table of n, a(n) for n = 0..1000</a>
%H Yves Martin, <a href="http://dx.doi.org/10.1090/S0002-9947-96-01743-6">Multiplicative eta-quotients</a>, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
%H Michael Somos, <a href="/A030203/a030203.txt">Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers</a>, 2016.
%F Euler transform of period 15 sequence [ 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -2, ...].
%F Moebius transform is period 15 sequence [ 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, ...].
%F G.f. A(q) satisfies 0 = f(A(q), A(q^2), A(q^4)) where f(u, v, w) = - v^3 + 4*u*v*w - 2*u*w^2 - u^2*w.
%F G.f.: Product_{k>0} ((1 - x^(3*k)) * (1 - x^(5*k)))^2 / ((1 - x^k) * (1 - x^(15*k))).
%F G.f.: (1/2) * (Sum_{n,m in Z} x^(n^2 + n*m + 4*m^2) + x^(2*n^2 + n*m + 2*m^2)).
%F a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0. a(3*n) = a(n).
%F a(n) = A035175(n) unless n=0. a(n) = |A106406(n)| unless n=0.
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (15 t)) = 15^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - _Michael Somos_, Feb 10 2015
%F a(n) = Sum_{d | n} Kronecker(-15, d). - _Andrew Howroyd_, Jul 27 2018
%F From _Amiram Eldar_, Feb 20 2024: (Start)
%F Multiplicative with a(p^e) = 1 if p = 3 or 5, e + 1 if Kronecker(-15, p) = 1, and 1 - (e mod 2) if Kronecker(-15, p) = -1.
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(15). (End)
%e G.f. = 1 + q + 2*q^2 + q^3 + 3*q^4 + q^5 + 2*q^6 + 4*q^8 + q^9 + 2*q^10 + ...
%t a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3] QPochhammer[ q^5])^2 / ( QPochhammer[ q] QPochhammer[ q^15]), {q, 0, n}]; (* _Michael Somos_, Feb 10 2015 *)
%t a[ n_] := If[ n < 1, Boole[n == 0], Sum[ KroneckerSymbol[ -15, d], { d, Divisors[ n]}]]; (* _Michael Somos_, Feb 10 2015 *)
%o (PARI) {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -15, d)))};
%o (PARI) {a(n) = if( n<1, n==0, (qfrep( [2, 1; 1, 8],n, 1) + qfrep( [4, 1; 1, 4], n, 1))[n])};
%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^5 + A))^2 / (eta(x + A) * eta(x^15 + A)), n))};
%o (Magma) A := Basis( ModularForms( Gamma1(15), 1), 106); A[1] + A[2] + 2*A[3] + A[4] + 3*A[5] + A[6] + 2*A[7]; /* _Michael Somos_, Feb 10 2015 */
%Y Cf. A035175, A106406.
%K nonn,mult
%O 0,3
%A _Michael Somos_, Oct 14 2006