login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355627
a(n) is the number of tuples (t_1, ..., t_k) with a positive integer k and integers 2 <= t_1 <= ... <= t_k such that n = Product_{i = 1..k} (3 + 1/t_i).
6
2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 14, 0, 2, 9, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9291, 1668, 0, 2170, 226, 0, 1052, 59, 0
OFFSET
10,1
COMMENTS
Because 3^k < Product_{i = 1..k} (3 + 1/t_i) < 3.5^k, a(n) > 0 is possible only for 10 <= n <= 12 (k = 2), 28 <= n <= 42 (k = 3), 82 <= n <= 150 (k = 4), 244 <= n <= 525 (k = 5) etc. For n <= 19683, there can exist at most one k such that n can be written as a product of k factors (3 + 1/t_i).
a(n) = 0 when n is a multiple of 3: Suppose n = Product_{i = 1..k) (3 + 1/t_i). Then n * Product_{i = 1..k} t_i = Product_{i = 1..k} (3 * t_i + 1). The right hand side is not a multiple of 3, so neither n nor any of the t_i can be a multiple of 3.
a(n) > 0 iff n is in A355631.
PROG
(PARI) See A355626.
CROSSREFS
KEYWORD
nonn
AUTHOR
Markus Sigg, Jul 15 2022
STATUS
approved