login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130716 a(0)=a(1)=a(2)=1, a(n)=0 for n>2. 7
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

With different signs this sequence is the convolutional inverse of the Fibonacci sequence: 1, -1, -1, 0, 0, ... - Tanya Khovanova, Jul 14 2007

Inverse binomial transform of A000124. - R. J. Mathar, Jun 13 2008

Partial sums give A158799. [Jaroslav Krizek, Dec 06 2009]

LINKS

Table of n, a(n) for n=0..86.

FORMULA

Given g.f. A(x), then B(a) = A(q) / q  satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v - u * (u - 2). - Michael Somos, Oct 22 2013

Euler transform of length 3 sequence [ 1, 0, -1]. - Michael Somos, Oct 22 2013

G.f. is third cyclotomic polynomial.

G.f.: (1 - x^3) / (1 - x).

Convolution inverse is A049347. - Michael Somos, Oct 22 2013

EXAMPLE

G.f. = 1 + x + x^2.

G.f. = 1/q + 1 + q.

MATHEMATICA

a[ n_] := Boole[ n>=0 && n<=2]; (* Michael Somos, Oct 22 2013 *)

PROG

(PARI) {a(n) = n>=0 && n<=2}; /* Michael Somos, Oct 22 2013 */

CROSSREFS

Cf. A049347.

Sequence in context: A103583 A070178 A127254 * A014102 A014195 A014096

Adjacent sequences:  A130713 A130714 A130715 * A130717 A130718 A130719

KEYWORD

easy,nonn

AUTHOR

Paul Curtz and Tanya Khovanova, Jul 01 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 16:52 EDT 2017. Contains 287130 sequences.