The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130716 a(0)=a(1)=a(2)=1, a(n)=0 for n>2. 10
 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS With different signs this sequence is the convolutional inverse of the Fibonacci sequence: 1, -1, -1, 0, 0, ... - Tanya Khovanova, Jul 14 2007 Inverse binomial transform of A000124. - R. J. Mathar, Jun 13 2008 Partial sums give A158799. [Jaroslav Krizek, Dec 06 2009] LINKS Table of n, a(n) for n=0..86. Andrei Asinowski, Cyril Banderier, Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019). FORMULA Given g.f. A(x), then B(a) = A(q) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v - u * (u - 2). - Michael Somos, Oct 22 2013 Euler transform of length 3 sequence [ 1, 0, -1]. - Michael Somos, Oct 22 2013 G.f. is third cyclotomic polynomial. G.f.: (1 - x^3) / (1 - x). Convolution inverse is A049347. - Michael Somos, Oct 22 2013 EXAMPLE G.f. = 1 + x + x^2. G.f. = 1/q + 1 + q. MATHEMATICA a[ n_] := Boole[ n>=0 && n<=2]; (* Michael Somos, Oct 22 2013 *) PROG (PARI) {a(n) = n>=0 && n<=2}; /* Michael Somos, Oct 22 2013 */ CROSSREFS Cf. A049347. Sequence in context: A266678 A267936 A263013 * A014102 A014195 A014096 Adjacent sequences: A130713 A130714 A130715 * A130717 A130718 A130719 KEYWORD easy,nonn AUTHOR Paul Curtz and Tanya Khovanova, Jul 01 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 10:24 EDT 2024. Contains 373383 sequences. (Running on oeis4.)