login
A158799
a(0)=1, a(1)=2, a(n)=3 for n >= 2.
17
1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
OFFSET
0,2
COMMENTS
a(n) = number of neighboring natural numbers of n (i.e., n, n - 1, n + 1). a(n) = number of natural numbers m such that n - 1 <= m <= n + 1. Generalization: If a(n,k) = number of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = a(n-1,k) + 1 = n + k for 0 <= n <= k, a(n,k) = a(n-1,k) = 2*k + 1 for n >= k + 1. - Jaroslav Krizek, Nov 18 2009
Partial sums of A130716; partial sums give A008486. - Jaroslav Krizek, Dec 06 2009
In atomic spectroscopy, a(n) is the number of P term symbols with spin multiplicity equal to n+1, i.e., there is one singlet-P term (n=0), there are two doublet-P terms (n=1), and there are three P terms for triple multiplicity (n=2) and higher (n>2). - A. Timothy Royappa, Mar 16 2012
a(n+1) is also the domination number of the n-Andrásfai graph. - Eric W. Weisstein, Apr 09 2016
Decimal expansion of 37/300. - Elmo R. Oliveira, May 11 2024
a(n+1) is also the domination number of the n X n rook complement graph. - Eric W. Weisstein, Mar 10 2025
LINKS
David Applegate, The movie version
Eric Weisstein's World of Mathematics, Andrásfai Graph.
Eric Weisstein's World of Mathematics, Domination Number.
Eric Weisstein's World of Mathematics, Rook Complement Graph.
FORMULA
G.f.: (1+x+x^2)/(1-x) = (1-x^3)/(1-x)^2.
a(n) = (n>=0)+(n>=1)+(n>=2).
a(n) = 1 + n for 0 <= n <= 1, a(n) = 3 for n >= 2. a(n) = A157532(n) for n >= 1. - Jaroslav Krizek, Nov 18 2009
E.g.f.: 3*exp(x) - x - 2 = x^2/(2*G(0)) where G(k) = 1 + (k+2)/(x - x*(k+1)/(x + k + 1 - x^4/(x^3 + (k+1)*(k+2)*(k+3)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2012
a(n) = min(n+1,3). - Wesley Ivan Hurt, Apr 16 2014
a(n) = 1 + A130130(n). - Elmo R. Oliveira, May 11 2024
MATHEMATICA
PadRight[{1, 2}, 120, {3}] (* or *) Min[#, 3]&/@Range[120] (* Harvey P. Dale, Apr 08 2018 *)
PROG
(PARI) a(n)=if(n>1, 3, if(n<0, 0, n++))
KEYWORD
nonn,easy,changed
AUTHOR
Jaume Oliver Lafont, Mar 27 2009
EXTENSIONS
Corrected by Jaroslav Krizek, Dec 17 2009
STATUS
approved