login
A344511
a(n) = Sum_{k >= 0} sign(d_k) * 2^k for any number n with decimal expansion Sum_{k >= 0} d_k * 10^k.
2
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3
OFFSET
0,11
COMMENTS
The binary expansion of a(n) encodes the nonzero digits of the decimal expansion of n.
LINKS
FORMULA
a(n) belongs to A140900 iff n belongs to A343452.
a(A007088(n)) = n.
EXAMPLE
For n = 20!:
- 2432902008176640000 is the decimal expansion of 20!, so
1111101001111110000 is the binary expansion of a(20!),
- a(20!) = 513008.
PROG
(PARI) a(n) = fromdigits(apply(sign, digits(n)), 2)
(Python)
def a(n): return int("".join((('1' if d!='0' else '0') for d in str(n))), 2)
print([a(n) for n in range(87)]) # Michael S. Branicky, May 22 2021
CROSSREFS
Cf. A007088, A140900, A289831 (base-3 analog), A343452.
Sequence in context: A192454 A340944 A270533 * A244919 A158799 A157532
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, May 21 2021
STATUS
approved