OFFSET
2,1
COMMENTS
Wolstenholme's theorem implies that k >= 3 for all p > 3. The prime p is a Wolstenholme prime if and only if k > 3. For the primes up to 10^9 this holds only for p = 16843 and p = 2124679, where in each case a(n) = 4 (i.e. a(1944) = 4 and a(157504) = 4).
LINKS
R. J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arith., Volume 71, Issue 4 (1995), 381-389.
R. J. McIntosh and E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp., 76 (2007), 2087-2094.
PROG
(PARI) forprime(p=3, 10^3, k=1; while(Mod(binomial(2*p-1, p-1), p^k)==1, j=k; k++); if(Mod(binomial(2*p-1, p-1), p^k)!=1, print1(j, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Jul 08 2014
STATUS
approved