login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158802
a(n) = n * n! * b(n), where b(n) = ((n-1)*(n-3)*b(n-1) - b(n-2) + b(n-3))/(n*(n - 1)) and b(0) = b(1) = 1, b(2) = -1.
1
0, 1, -4, 0, 16, 10, 12, 182, 1120, 7452, 58640, 520784, 5142144, 55929640, 664505744, 8562670920, 118939979008, 1771631324848, 28168269788160, 476151820931168, 8526830353553920, 161255217263900256
OFFSET
0,3
REFERENCES
Martin Braun, 'Differential Equations and Their Applications: An Introduction to Applied Mathematics', Texts in Applied Mathematics, Vol. 11, Springer, 4th ed., 1992, pp. 194-196, Example 5.
LINKS
FORMULA
a(n) = n * n! * b(n), where b(n) = ((n-1)*(n-3)*b(n-1) - b(n-2) + b(n-3))/(n*(n - 1)) and b(0) = b(1) = 1, b(2) = -1.
From G. C. Greubel, Dec 07 2021: (Start)
a(n) = (n/((n-1)*(n-2)*(n-3)))*((n-2)*(n-3)^2*a(n-1) - (n-1)*(n-3)*a(n-2) + (n-1)*(n-2)^2*a(n-3)), with a(0) = 0, a(1) = 1, a(2) = -4, a(3) = 0.
a(n) = n*n!*b(n), where y(t) = Sum_{n>=0} b(n)*t^n satisfies the differential equation (1-t)*y''(t) + y'(t) + (1-t)*y(t) = 0.
a(n) = n*n!*b(n), where y(t) = Sum_{n>=0} b(n)*t^n = (((1-t)*((BesselJ[0, 1] + 4*BesselJ[1, 1] - BesselJ[2, 1])*BesselY[1, t-1] - BesselJ[1, 1-t]*(BesselY[0, -1] - 4*BesselY[1, -1] - BesselY[2, -1])))/((BesselJ[0, 1] - BesselJ[2, 1]) BesselY[1, -1] + BesselJ[1, 1] (BesselY[0, -1] - BesselY[2, -1]))). (End)
MATHEMATICA
b[0]:=1; b[1]:=1; b[2]:=-1;
b[n_]:= b[n]= ((n-1)*(n-3)*b[n-1] - b[n-2] + b[n-3])/(n*(n-1));
Table[n*n!*b[n], {n, 0, 30}]
PROG
(Sage)
@CachedFunction
def a(n):
if (n<3): return (-1)^(n+1)*n^2
elif (n==3): return 0
else: return (n/((n-1)*(n-2)*(n-3)))*((n-2)*(n-3)^2*a(n-1) -(n-1)*(n-3)*a(n-2) +(n-1)*(n-2)^2*a(n-3))
[a(n) for n in (0..30)] # G. C. Greubel, Dec 07 2021
CROSSREFS
Sequence in context: A167314 A208451 A207541 * A230280 A030212 A167359
KEYWORD
sign
AUTHOR
Roger L. Bagula, Mar 27 2009
EXTENSIONS
Edited by G. C. Greubel, Dec 07 2021
STATUS
approved