login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167359
Totally multiplicative sequence with a(p) = (p+2)*(p-3) = p^2-p-6 for prime p.
1
1, -4, 0, 16, 14, 0, 36, -64, 0, -56, 104, 0, 150, -144, 0, 256, 266, 0, 336, 224, 0, -416, 500, 0, 196, -600, 0, 576, 806, 0, 924, -1024, 0, -1064, 504, 0, 1326, -1344, 0, -896, 1634, 0, 1800, 1664, 0, -2000, 2156, 0, 1296, -784, 0, 2400, 2750, 0, 1456
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = ((p+2)*(p-3))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)+2)*(p(k)-3))^e(k).
a(3k) = 0 for k >= 1.
a(n) = A166590(n) * A166589(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/Pi^2) / Product_{p prime} (1 + 7/p^3 + 6/p^4) = 0.06114270465... . - Amiram Eldar, Dec 15 2022
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 3)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 11 2016 *)
CROSSREFS
Sequence in context: A158802 A230280 A030212 * A259491 A292180 A261979
KEYWORD
sign,mult
AUTHOR
Jaroslav Krizek, Nov 01 2009
STATUS
approved