login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167361
Totally multiplicative sequence with a(p) = (p-3)^2 = p^2-6p+9 for prime p.
1
1, 1, 0, 1, 4, 0, 16, 1, 0, 4, 64, 0, 100, 16, 0, 1, 196, 0, 256, 4, 0, 64, 400, 0, 16, 100, 0, 16, 676, 0, 784, 1, 0, 196, 64, 0, 1156, 256, 0, 4, 1444, 0, 1600, 64, 0, 400, 1936, 0, 256, 16, 0, 100, 2500, 0, 256, 16, 0, 676, 3136, 0, 3364, 784, 0, 1, 400
OFFSET
1,5
LINKS
FORMULA
Multiplicative with a(p^e) = ((p-3)^2)^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-3)^2)^e(k).
a(3k) = 0 for k >= 1.
a(n) = A166589(n)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/Pi^2) / Product_{p prime} (1 + 5/p^2 - 3/p^3 - 9/p^4) = 0.07909568395... . - Amiram Eldar, Dec 15 2022
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 3)^fi[[All, 2]])); Table[a[n]^2, {n, 1, 100}] (* G. C. Greubel, Jun 11 2016 *)
CROSSREFS
Cf. A166589.
Sequence in context: A003195 A190759 A086262 * A321610 A167314 A208451
KEYWORD
nonn,mult
AUTHOR
Jaroslav Krizek, Nov 01 2009
STATUS
approved