login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208451
Expansion of phi(q) * phi(-q)^3 in powers of q where phi() is a Ramanujan theta function.
1
1, -4, 0, 16, -8, -24, 0, 32, 24, -52, 0, 48, -32, -56, 0, 96, 24, -72, 0, 80, -48, -128, 0, 96, 96, -124, 0, 160, -64, -120, 0, 128, 24, -192, 0, 192, -104, -152, 0, 224, 144, -168, 0, 176, -96, -312, 0, 192, 96, -228, 0, 288, -112, -216, 0, 288, 192, -320
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-q^4)^4 - 4 * q * psi(-q^2)^4 = phi(q) * phi(-q)^3 = phi(-q)^2 * phi(-q^2)^2 = phi(-q^2)^6 / phi(q)^2 = psi(-q)^4 * chi(-q^2)^6 = f(-q)^4 * chi(-q^2)^2 = f(-q)^6 / psi(-q)^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (eta(q)^2 * eta(x^2) / eta(x^4))^2 in powers of q.
Euler transform of period 4 sequence [ -4, -6, -4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 5128 (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A097723.
a(4*n + 2) = 0. a(2*n + 1) = -4 * A121613(n). a(4*n) = A096727(n). a(4*n + 1) = -4 * A112610(n). a(4*n + 3) = 16 * A097723(n). a(8*n) = A004011(n). a(8*n + 4) = -8 * A008438(n).
EXAMPLE
G.f. = 1 - 4*q + 16*q^3 - 8*q^4 - 24*q^5 + 32*q^7 + 24*q^8 - 52*q^9 + 48*q^11 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^2 QPochhammer[ q^2] / QPochhammer[ q^4])^2, {q, 0, n}]; (* Michael Somos, Aug 21 2014 *)
PROG
(PARI) {a(n) = if( n<1, n==0, if( n%4 == 2, 0, -4 * if( n%2, (-1)^(n\2) * sigma(n), -2 * (-1)^(n\4) * sumdiv( n\4, d, if( d%4, d)))))};
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^2 + A) / eta(x^4 + A))^2, n))};
(Magma) A := Basis( ModularForms( Gamma0(16), 2), 58); A[1] - 4*A[2] + 16*A[4] - 8*A[5]; /* Michael Somos, Aug 21 2014 */
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 26 2012
STATUS
approved