login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121613
Expansion of psi(-x)^4 in powers of x where psi() is a Ramanujan theta function.
6
1, -4, 6, -8, 13, -12, 14, -24, 18, -20, 32, -24, 31, -40, 30, -32, 48, -48, 38, -56, 42, -44, 78, -48, 57, -72, 54, -72, 80, -60, 62, -104, 84, -68, 96, -72, 74, -124, 96, -80, 121, -84, 108, -120, 90, -112, 128, -120, 98, -156, 102, -104, 192, -108, 110
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 33 of the 74 eta-quotients listed in Table I of Martin (1996).
REFERENCES
J. W. L. Glaisher, Notes on Certain Formulae in Jacobi's Fundamenta Nova, Messenger of Mathematics, 5 (1876), pp. 174-179. see p.179
Hardy, et al., Collected Papers of Srinivasa Ramanujan, p. 326, Question 359.
LINKS
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * (eta(q) * eta(q^4) / eta(q^2))^4 in powers of q.
Expansion of q^(-1/2)/4 * k * k' * (K / (Pi/2))^2 in powers of q where k, k', K are Jacobi elliptic functions. - Michael Somos, Jun 22 2012
Euler transform of period 4 sequence [ -4, 0, -4, -4, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^n, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1 (mod 4), b(p^e) = (-1)^e * (p^(e+1) - 1) / (p - 1) if p == 3 (mod 4).
Given g.f. A(x), then B(x) = 4 * Integral_{0..x} A(x^2) dx = arcsin(4 * x * A001938(x^2)) satisfies 0 = f(B(x), B(x^3)) where f(u, v) = sin(u + v) / 2 - sin((u - v) / 2). - Michael Somos, Oct 14 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 27 2013
G.f.: (Product_{k>0} (1 - x^k) / (1 - x^(4*k - 2)))^4.
G.f.: Sum_{k>0} -(-1)^k * (2*k - 1) * x^(k - 1) / (1 + x^(2*k - 1)).
G.f.: (Product_{k>0} (1 - x^(2*k - 1)) * (1 - x^(4*k)))^4.
G.f.: (Sum_{k>0} (-1)^floor(k/2) * x^((k^2 - k)/2))^4.
G.f.: Sum_{k>0} (-1)^k * (2*k - 1) * x^(2*k - 1) / (1 + x^(4*k - 2)).
a(n) = (-1)^n * A008438(n). a(2*n) = A112610(n). a(2*n + 1) = -4 * A097723(n).
Convolution square of A134343. - Michael Somos, Jun 20 2012
a(3*n + 2) = 6 * A258831(n). a(4*n + 3) = -8 * A258835(n). - Michael Somos, Jun 11 2015
EXAMPLE
G.f. = 1 - 4*x + 6*x^2 - 8*x^3 + 13*x^4 - 12*x^5 + 14*x^6 - 24*x^7 + ...
G.f. = q - 4*q^3 + 6*q^5 - 8*q^7 + 13*q^9 - 12*q^11 + 14*q^13 - 24*q^15 + ...
MATHEMATICA
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[(1 - m) m ] (EllipticK[m] 2/Pi)^2 / (4 q^(1/2)), {q, 0, n}]]; (* Michael Somos, Jun 22 2012 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ q] QPochhammer[ q^4] / QPochhammer[ q^2])^4, {q, 0, n}]; (* Michael Somos, Oct 14 2013 *)
a[ n_] := If[ n < 0, 0, (-1)^n DivisorSigma[1, 2 n + 1]]; (* Michael Somos, Jun 15 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, (-1)^n * sigma(2*n + 1))};
(Sage) A = ModularForms( Gamma0(16), 2, prec=110).basis(); A[1] - 4*A[3]; # Michael Somos, Jun 27 2013
(Magma) A := Basis( ModularForms( Gamma0(16), 2), 110); A[2] - 4*A[4]; /* Michael Somos, Jun 10 2015 */
KEYWORD
sign
AUTHOR
Michael Somos, Aug 10 2006
STATUS
approved