OFFSET
0,2
COMMENTS
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..20000 (first 1000 terms from G. C. Greubel).
Michael Somos, Introduction to Ramanujan theta functions, 2019.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of q^(-7/8) * eta(q^2)^6 * eta(q^8)^2 / (eta(q)^3 * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [ 3, -3, 3, -2, 3, -3, 3, -4, ...].
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 + x^k)^3 * (1 + x^(2*k)) * (1 + x^(4*k))^2.
-8 * a(n) = A121613(4*n + 3). a(n) = sigma(8*n + 7) / 8.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/16 = 0.6168502... (A222068). - Amiram Eldar, Mar 28 2024
EXAMPLE
G.f. = 1 + 3*x + 3*x^2 + 4*x^3 + 7*x^4 + 6*x^5 + 9*x^6 + 13*x^7 + 9*x^8 + ...
G.f. = q^7 + 3*q^15 + 3*q^23 + 4*q^31 + 7*q^39 + 6*q^47 + 9*q^55 + 13*q^63 + ...
MAPLE
with(numtheory): seq(sigma(8*n-1)/8, n=1..1000); # Muniru A Asiru, Dec 31 2017
MATHEMATICA
a[ n_] := If[ n < 0, 0, DivisorSigma[ 1, 8 n + 7] / 8];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x]^3 EllipticTheta[ 2, 0, x^4] / (16 x^(7/4)), {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, sigma(8*n + 7) / 8)};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^8 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)), n))};
(GAP) sequence := List([1..10^5], n->Sigma(8*n-1)/8); # Muniru A Asiru, Dec 31 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jun 11 2015
STATUS
approved