login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258835
Expansion of psi(x)^3 * psi(x^4) in powers of x where psi() is a Ramanujan theta function.
3
1, 3, 3, 4, 7, 6, 9, 13, 9, 10, 15, 15, 13, 19, 18, 16, 30, 21, 19, 27, 21, 31, 31, 24, 25, 39, 33, 28, 48, 30, 35, 54, 33, 34, 52, 42, 45, 51, 39, 45, 55, 51, 50, 70, 45, 46, 78, 48, 54, 80, 57, 63, 78, 54, 55, 75, 84, 58, 79, 60, 61, 117, 63, 74, 87, 72, 81
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..20000 (first 1000 terms from G. C. Greubel).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of q^(-7/8) * eta(q^2)^6 * eta(q^8)^2 / (eta(q)^3 * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [ 3, -3, 3, -2, 3, -3, 3, -4, ...].
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 + x^k)^3 * (1 + x^(2*k)) * (1 + x^(4*k))^2.
-8 * a(n) = A121613(4*n + 3). a(n) = sigma(8*n + 7) / 8.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/16 = 0.6168502... (A222068). - Amiram Eldar, Mar 28 2024
EXAMPLE
G.f. = 1 + 3*x + 3*x^2 + 4*x^3 + 7*x^4 + 6*x^5 + 9*x^6 + 13*x^7 + 9*x^8 + ...
G.f. = q^7 + 3*q^15 + 3*q^23 + 4*q^31 + 7*q^39 + 6*q^47 + 9*q^55 + 13*q^63 + ...
MAPLE
with(numtheory): seq(sigma(8*n-1)/8, n=1..1000); # Muniru A Asiru, Dec 31 2017
MATHEMATICA
a[ n_] := If[ n < 0, 0, DivisorSigma[ 1, 8 n + 7] / 8];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x]^3 EllipticTheta[ 2, 0, x^4] / (16 x^(7/4)), {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, sigma(8*n + 7) / 8)};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^8 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)), n))};
(GAP) sequence := List([1..10^5], n->Sigma(8*n-1)/8); # Muniru A Asiru, Dec 31 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jun 11 2015
STATUS
approved