OFFSET
0,6
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/12) * eta(q) * eta(q^4) * eta(q^6)^4 / (eta(q^2)^2 * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -1, 1, 0, 0, -1, -2, -1, 0, 0, 1, -1, -2, ...].
G.f.: Product_{k>0} (1 + x^k)^2 * (1 - x^(3*k))^2 * (1 - x^k + x^(2*k))^3 / (1 - x^(2*k) + x^(4*k)).
EXAMPLE
G.f. = 1 - x + x^2 - x^3 + x^4 - 2*x^5 - x^7 + x^8 - x^9 + 2*x^10 + ...
G.f. = q^5 - q^17 + q^29 - q^41 + q^53 - 2*q^65 - q^89 + q^101 - q^113 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 12 n + 5, KroneckerSymbol[ -4, #] &] / 2];
a[ n_] := SeriesCoefficient[ QPochhammer[ x^6]^2 QPochhammer[ x, -x] / QPochhammer[ x^3, -x^3], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, (-1)^n * sumdiv( 12*n + 5, d, kronecker( -4, d)) / 2)};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^4 / (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 11 2015
STATUS
approved