OFFSET
0,8
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
EXAMPLE
p = 1432 is counted by T(4,2) because the up-down signature of 0,p = 01432 is 1,1,-1,-1 with partial sums 1,2,1,0.
q = 4321 is not counted by any T(4,k) because the up-down signature of 0,q = 04321 is 1,-1,-1,-1 with partial sums 1,0,-1,-2.
T(4,1) = 5: 2143, 3142, 3241, 4132, 4231.
T(4,2) = 11: 1324, 1423, 1432, 2134, 2314, 2413, 2431, 3124, 3412, 3421, 4123.
T(4,3) = 3: 1243, 1342, 2341.
T(4,4) = 1: 1234.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 5, 11, 3, 1;
0, 16, 38, 28, 4, 1;
0, 61, 263, 130, 62, 5, 1;
0, 272, 1260, 1263, 340, 129, 6, 1;
0, 1385, 10871, 8090, 4734, 819, 261, 7, 1;
MAPLE
b:= proc(u, o, c, k) option remember;
`if`(c<0 or c>k, 0, `if`(u+o=0, 1,
add(b(u-j, o-1+j, c+1, k), j=1..u)+
add(b(u+j-1, o-j, c-1, k), j=1..o)))
end:
A:= (n, k)-> b(n, 0$2, k):
T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
b[u_, o_, c_, k_] := b[u, o, c, k] = If[c < 0 || c > k, 0, If[u + o == 0, 1, Sum[b[u - j, o - 1 + j, c + 1, k], {j, 1, u}] + Sum[b[u + j - 1, o - j, c - 1, k], {j, 1, o}]]];
A[n_, k_] := b[n, 0, 0, k];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jun 11 2015
STATUS
approved