login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266947
Number of permutations p of [2n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of n.
2
1, 1, 11, 130, 4734, 127538, 11174035, 554432537, 92953037066, 7392808621010, 2037044419366071, 237281497432517293, 97619260603080874874, 15664643539583989506694, 9013597510492035989870645, 1906222253095637349478735538, 1463288823474568248157186058298
OFFSET
0,3
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..168 (terms 0..100 from Alois P. Heinz)
FORMULA
a(n) = A258829(2n,n).
EXAMPLE
a(2) = 11: 1324, 1423, 1432, 2134, 2314, 2413, 2431, 3124, 3412, 3421, 4123.
MAPLE
b:= proc(u, o, c, k) option remember;
`if`(c<0 or c>k, 0, `if`(u+o=0, 1,
add(b(u-j, o-1+j, c+1, k), j=1..u)+
add(b(u+j-1, o-j, c-1, k), j=1..o)))
end:
a:= n-> b(2*n, 0$2, n)-b(2*n, 0$2, n-1):
seq(a(n), n=0..20);
MATHEMATICA
b[u_, o_, c_, k_] := b[u, o, c, k] = If[c < 0 || c > k, 0, If[u + o == 0, 1, Sum[b[u - j, o - 1 + j, c + 1, k], {j, 1, u}] + Sum[b[u + j - 1, o - j, c - 1, k], {j, 1, o}]]];
a[n_] := b[2n, 0, 0, n] - b[2n, 0, 0, n - 1];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A258829.
Sequence in context: A183837 A015603 A184280 * A157718 A256957 A046210
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 06 2016
STATUS
approved