login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266949
a(n) is defined by Product_{i>=1} (1-a(i)*x^i) = Sum_{i>=0} möbius(i+1)*x^i.
1
1, 1, 1, 2, 2, 4, 6, 8, 13, 22, 35, 48, 89, 129, 228, 345, 609, 897, 1624, 2421, 4295, 6598, 11855, 18217, 32396, 49787, 88387, 139517, 246442, 380905, 684682, 1082651, 1895821, 3009692, 5346768, 8514026, 15024307, 23891567, 42093993, 68125683, 119570322
OFFSET
1,4
COMMENTS
Conjecture: All coefficients are positive and strictly increasing starting from 5th term.
Probably the k-values for which c(i) calculated from the equation Product_{i>=1}(1-c(i)*x^i) = Sum_{i>=0}(möbius(i+k)*x^i) is positive and increasing are [1, 2, 27, 28, 39, 40, 41, 58, 65, 69, ...].
LINKS
MAPLE
with(ListTools): L := product(1-a[k]*x^k, k = 1 .. 100): S := [seq(numtheory[mobius](i+1), i = 1 .. 100)]: Sabs := [seq(i, i = 1 .. 100)]: seq(assign(a[i] = solve(coeff(L, x^i) = `if`(is(i in Sabs), S[Search(i, Sabs)], 0), a[i])), i = 1 .. 100): U := [seq(a[i], i = 1 .. 100)]
# alternative:
N:= 100: # to get a(1) to a(N)
P[0]:= 1:
for n from 1 to N do
a[n]:= coeff(P[n-1], x, n) - numtheory:-mobius(n+1);
P[n]:= P[n-1]*(1-a[n]*x^n);
od:
seq(a[n], n=1..N); # Robert Israel, Jan 06 2016
MATHEMATICA
Module[{a, n = 15}, Array[a, n] /. Flatten@Solve[CoefficientList[Product[1 - a[i] x^i, {i, n}], x][[;; n + 1]] == Array[MoebiusMu, n + 1], Array[a, n]]] (* JungHwan Min, Jan 10 2016 *)
Module[{a, n = 25}, Array[a, n] /. Flatten@Solve[Table[Plus @@ Times @@@ Replace[Select[IntegerPartitions[m], DuplicateFreeQ], k_ :> -a[k], {2}] == MoebiusMu[m + 1], {m, n}], Array[a, n]]] (* JungHwan Min, Jan 10 2016 *)
P= 1; a[0] = 0; a[n_] := a[n] = Coefficient[P = Collect[P (1 - a[n - 1] x^(n - 1)), x], x, n] - MoebiusMu[n + 1]; Array[a, 40] (* JungHwan Min, Jan 17 2016 *)
CROSSREFS
Cf. A008683.
Sequence in context: A274155 A145465 A291055 * A255710 A329137 A239851
KEYWORD
nonn
AUTHOR
Gevorg Hmayakyan, Jan 06 2016
STATUS
approved