Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Nov 13 2016 15:59:45
%S 1,1,1,2,2,4,6,8,13,22,35,48,89,129,228,345,609,897,1624,2421,4295,
%T 6598,11855,18217,32396,49787,88387,139517,246442,380905,684682,
%U 1082651,1895821,3009692,5346768,8514026,15024307,23891567,42093993,68125683,119570322
%N a(n) is defined by Product_{i>=1} (1-a(i)*x^i) = Sum_{i>=0} möbius(i+1)*x^i.
%C Conjecture: All coefficients are positive and strictly increasing starting from 5th term.
%C Probably the k-values for which c(i) calculated from the equation Product_{i>=1}(1-c(i)*x^i) = Sum_{i>=0}(möbius(i+k)*x^i) is positive and increasing are [1, 2, 27, 28, 39, 40, 41, 58, 65, 69, ...].
%H Robert Israel, <a href="/A266949/b266949.txt">Table of n, a(n) for n = 1..1000</a>
%p with(ListTools): L := product(1-a[k]*x^k, k = 1 .. 100): S := [seq(numtheory[mobius](i+1), i = 1 .. 100)]: Sabs := [seq(i, i = 1 .. 100)]: seq(assign(a[i] = solve(coeff(L, x^i) = `if`(is(i in Sabs), S[Search(i, Sabs)], 0), a[i])), i = 1 .. 100): U := [seq(a[i], i = 1 .. 100)]
%p # alternative:
%p N:= 100: # to get a(1) to a(N)
%p P[0]:= 1:
%p for n from 1 to N do
%p a[n]:= coeff(P[n-1],x,n) - numtheory:-mobius(n+1);
%p P[n]:= P[n-1]*(1-a[n]*x^n);
%p od:
%p seq(a[n],n=1..N); # _Robert Israel_, Jan 06 2016
%t Module[{a, n = 15}, Array[a, n] /. Flatten@Solve[CoefficientList[Product[1 - a[i] x^i, {i, n}], x][[;; n + 1]] == Array[MoebiusMu, n + 1], Array[a, n]]] (* _JungHwan Min_, Jan 10 2016 *)
%t Module[{a, n = 25}, Array[a, n] /. Flatten@Solve[Table[Plus @@ Times @@@ Replace[Select[IntegerPartitions[m], DuplicateFreeQ], k_ :> -a[k], {2}] == MoebiusMu[m + 1], {m, n}], Array[a, n]]] (* _JungHwan Min_, Jan 10 2016 *)
%t P= 1; a[0] = 0; a[n_] := a[n] = Coefficient[P = Collect[P (1 - a[n - 1] x^(n - 1)), x], x, n] - MoebiusMu[n + 1]; Array[a, 40] (* _JungHwan Min_, Jan 17 2016 *)
%Y Cf. A008683.
%K nonn
%O 1,4
%A _Gevorg Hmayakyan_, Jan 06 2016