login
A262125
Number T(n,k) of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value of k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
15
1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 5, 3, 1, 0, 0, 16, 24, 4, 1, 0, 0, 61, 101, 57, 5, 1, 0, 0, 272, 862, 311, 123, 6, 1, 0, 0, 1385, 4743, 3857, 778, 254, 7, 1, 0, 0, 7936, 47216, 27589, 14126, 1835, 514, 8, 1, 0, 0, 50521, 322039, 355751, 111811, 47673, 4189, 1031, 9, 1, 0
OFFSET
0,8
LINKS
FORMULA
T(n,k) = A262124(n,k) - A262124(n,k-1) for k>0, T(n,0) = A262124(n,0).
EXAMPLE
T(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
T(4,2) = 3: 1243, 1342, 2341.
T(4,3) = 1: 1234.
Triangle T(n,k) begins:
1;
1, 0;
0, 1, 0;
0, 2, 1, 0;
0, 5, 3, 1, 0;
0, 16, 24, 4, 1, 0;
0, 61, 101, 57, 5, 1, 0;
0, 272, 862, 311, 123, 6, 1, 0;
0, 1385, 4743, 3857, 778, 254, 7, 1, 0;
MAPLE
b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, x^c,
(p-> add(coeff(p, x, i)*x^max(i, c), i=0..degree(p)))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
T:= n-> `if`(n=0, 1, (p-> seq(coeff(p, x, i), i=0..n)
)(add(b(j-1, n-j, 0), j=1..n))):
seq(T(n), n=0..10);
MATHEMATICA
b[u_, o_, c_] := b[u, o, c] = If[c<0, 0, If[u+o==0, x^c, Sum[Coefficient[ #, x, i]*x^Max[i, c], {i, 0, Exponent[#, x]}]]& @ Sum[b[u-j, o-1+j, c-1], {j, 1, u}] + Sum[b[u+j-1, o-j, c+1], {j, 1, o}]];
T[n_] := If[n==0, {1}, Table[Coefficient[#, x, i], {i, 0, n}]]& @ Sum[b[j-1, n-j, 0], {j, 1, n}];
T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Jan 19 2020, after Alois P. Heinz *)
CROSSREFS
Columns k=1-10 give: A000111 (for n>1), A320976, A320977, A320978, A320979, A320980, A320981, A320982, A320983, A320984.
Row sums give A000246.
T(2n,n) gives A262127.
Sequence in context: A079508 A057150 A185663 * A360068 A105868 A371568
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 11 2015
STATUS
approved