OFFSET
2,5
COMMENTS
There are only m nonzero entries in the m-th column.
Related to A033282: shift row n of A033282 triangle n places to the right and transpose the resulting table. - Michel Marcus, Feb 04 2014
LINKS
G. C. Greubel, Rows n=2..100 of triangle, flattened
Per Alexandersson, Frether Getachew Kebede, Samuel Asefa Fufa, and Dun Qiu, Pattern-Avoidance and Fuss-Catalan Numbers, J. Int. Seq. (2023) Vol. 26, Art. 23.4.2.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30 (see definition p. 26 and table p. 27).
G. N. Raney, Functional composition patterns and power series reversion, Trans. Amer. Math. Soc., 94 (1960), pp. 441-451.
FORMULA
T(n,k) = binomial(k, n-k) * binomial(n, k+1)/k. - Michel Marcus, Feb 04 2014
From Andrew Howroyd, Jan 24 2025
G.f.: -1 + ((1 + y*x) - sqrt(1 - 2*y*x + (y^2 - 4*y)*x^2))/(2*x*y*(1 + x)).
G.f.: -1 + (1/(x*y))*Series_Reversion(x*(1 - x)/(y - y*x + x^2)). (End)
EXAMPLE
From Michel Marcus, Feb 04 2014: (Start)
Triangle starts:
1;
0, 1;
0, 2, 1;
0, 0, 5, 1;
0, 0, 5, 9, 1;
0, 0, 0, 21, 14, 1;
0, 0, 0, 14, 56, 20, 1;
0, 0, 0, 0, 84, 120, 27, 1;
0, 0, 0, 0, 42, 300, 225, 35, 1;
0, 0, 0, 0, 0, 330, 825, 385, 44, 1;
0, 0, 0, 0, 0, 132, 1485, 1925, 616, 54, 1;
... (End)
MATHEMATICA
Table[Binomial[k, n-k]*Binomial[n, k+1]/k, {n, 2, 10}, {k, 1, n-1}]//Flatten (* G. C. Greubel, Jan 17 2019 *)
PROG
(PARI) tabl(nn) = {for (n = 2, nn, for (k = 1, n-1, print1(binomial(k, n-k)*binomial(n, k+1)/k, ", "); ); print(); ); } \\ Michel Marcus, Feb 04 2014
(Magma) [[Binomial(k, n-k)*Binomial(n, k+1)/k: k in [1..n-1]]: n in [2..10]]; // G. C. Greubel, Jan 17 2019
(Sage) [[binomial(k, n-k)*binomial(n, k+1)/k for k in (1..n-1)] for n in (2..10)] # G. C. Greubel, Jan 17 2019
(GAP) Flat(List([1..10], n->List([1..n-1], k-> Binomial(k, n-k)*Binomial(n , k+1)/k ))); # G. C. Greubel, Jan 17 2019
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Jan 21 2003
EXTENSIONS
Corrected and extended by Michel Marcus, Feb 04 2014
STATUS
approved