login
A262124
Number A(n,k) of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
16
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 3, 5, 0, 1, 1, 1, 3, 8, 16, 0, 1, 1, 1, 3, 9, 40, 61, 0, 1, 1, 1, 3, 9, 44, 162, 272, 0, 1, 1, 1, 3, 9, 45, 219, 1134, 1385, 0, 1, 1, 1, 3, 9, 45, 224, 1445, 6128, 7936, 0, 1, 1, 1, 3, 9, 45, 225, 1568, 9985, 55152, 50521, 0
OFFSET
0,14
LINKS
FORMULA
A(n,k) = Sum_{i=0..k} A262125(n,i).
EXAMPLE
p = 1423 is counted by T(4,1) because the up-down signature of p = 1423 is 1,-1,1 with partial sums 1,0,1.
q = 1432 is not counted by any T(4,k) because the up-down signature of q = 1432 is 1,-1,-1 with partial sums 1,0,-1.
A(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
A(4,2) = 8: 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.
A(4,3) = 9: 1234, 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 3, 3, 3, 3, 3, ...
0, 5, 8, 9, 9, 9, 9, 9, ...
0, 16, 40, 44, 45, 45, 45, 45, ...
0, 61, 162, 219, 224, 225, 225, 225, ...
0, 272, 1134, 1445, 1568, 1574, 1575, 1575, ...
MAPLE
b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, x^c,
(p-> add(coeff(p, x, i)*x^max(i, c), i=0..degree(p)))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
A:= (n, k)-> `if`(n=0, 1, (p-> add(coeff(p, x, i), i=0..min(n, k))
)(add(b(j-1, n-j, 0), j=1..n))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[u_, o_, c_] := b[u, o, c] = If[c<0, 0, If[u+o == 0, x^c, Function[p, Sum[ Coefficient[p, x, i]*x^Max[i, c], {i, 0, Exponent[p, x]}]][Sum[b[u-j, o - 1+j, c-1], {j, 1, u}] + Sum[b[u+j-1, o-j, c+1], {j, 1, o}]]]]; A[n_, k_] := If[n==0, 1, Function[p, Sum[Coefficient[p, x, i], {i, 0, Min[n, k]}]][ Sum[b[j-1, n-j, 0], {j, 1, n}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives A000246.
Sequence in context: A187596 A263863 A134655 * A199954 A333580 A375924
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 11 2015
STATUS
approved