login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A199954
Decimal expansion of greatest x satisfying x^2+cos(x)=4*sin(x).
3
2, 0, 1, 1, 1, 3, 7, 3, 4, 2, 2, 2, 9, 3, 3, 0, 8, 4, 6, 0, 0, 2, 5, 0, 6, 5, 4, 0, 8, 7, 9, 6, 3, 9, 3, 8, 8, 6, 3, 0, 0, 8, 4, 0, 8, 3, 8, 7, 3, 6, 0, 3, 0, 2, 4, 5, 8, 3, 9, 1, 4, 5, 9, 0, 1, 5, 3, 4, 4, 8, 6, 5, 5, 4, 5, 4, 0, 4, 2, 8, 5, 6, 1, 9, 7, 0, 4, 3, 0, 7, 4, 0, 8, 0, 4, 5, 5, 7, 0
OFFSET
1,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: 0.26157393647481130212296420178312116039782...
greatest x: 2.011137342229330846002506540879639388630...
MATHEMATICA
a = 1; b = 1; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .26, .27}, WorkingPrecision -> 110]
RealDigits[r] (* A199953 *)
r = x /. FindRoot[f[x] == g[x], {x, 2.0, 2.1}, WorkingPrecision -> 110]
RealDigits[r] (* A199954 *)
PROG
(PARI) a=1; b=1; c=4; solve(x=2, 2.1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018
CROSSREFS
Cf. A199949.
Sequence in context: A263863 A134655 A262124 * A333580 A375924 A219987
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 12 2011
STATUS
approved