The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199955 Decimal expansion of least x satisfying x^2+2*cos(x)=3*sin(x). 3
 7, 4, 0, 8, 0, 3, 3, 6, 8, 1, 9, 4, 1, 3, 2, 2, 3, 7, 5, 9, 6, 4, 2, 6, 9, 2, 4, 5, 4, 7, 0, 2, 1, 6, 2, 0, 9, 1, 7, 4, 2, 2, 2, 8, 9, 0, 7, 8, 0, 2, 3, 4, 5, 7, 2, 1, 8, 9, 5, 4, 4, 9, 0, 1, 2, 0, 5, 4, 3, 8, 4, 6, 0, 9, 7, 7, 9, 3, 0, 5, 3, 8, 2, 4, 5, 9, 1, 8, 8, 0, 7, 9, 2, 0, 2, 3, 7, 7, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A199949 for a guide to related sequences. The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 EXAMPLE least x: 0.74080336819413223759642692454702162091742... greatest x: 1.854778410356751774141939581736998761204... MATHEMATICA a = 1; b = 2; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .74, .75}, WorkingPrecision -> 110] RealDigits[r] (* A199955 *) r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110] RealDigits[r] (* A199956 *) PROG (PARI) a=1; b=2; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018 CROSSREFS Cf. A199949. Sequence in context: A091494 A021139 A020790 * A196624 A157413 A258500 Adjacent sequences: A199952 A199953 A199954 * A199956 A199957 A199958 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 12 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 11:37 EDT 2023. Contains 361549 sequences. (Running on oeis4.)