|
|
A199951
|
|
Decimal expansion of least x satisfying x^2 + cos(x) = 3*sin(x).
|
|
3
|
|
|
3, 6, 3, 5, 6, 0, 5, 3, 9, 8, 5, 8, 9, 5, 9, 2, 6, 6, 2, 5, 7, 3, 2, 1, 4, 8, 3, 7, 2, 2, 8, 4, 3, 9, 8, 5, 6, 6, 8, 9, 5, 7, 9, 0, 7, 4, 2, 5, 0, 8, 4, 0, 8, 0, 7, 4, 4, 2, 0, 4, 5, 7, 1, 8, 4, 0, 3, 1, 3, 4, 0, 6, 6, 8, 8, 6, 2, 2, 7, 6, 2, 6, 7, 4, 1, 8, 8, 9, 9, 6, 0, 8, 8, 5, 1, 2, 9, 2, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
|
|
LINKS
|
|
|
EXAMPLE
|
least x: 0.36356053985895926625732148372284398566895...
greatest x: 1.771792952982026337265923586449094216220...
|
|
MATHEMATICA
|
a = 1; b = 1; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .36, .37}, WorkingPrecision -> 110]
r = x /. FindRoot[f[x] == g[x], {x, 1.77, 1.78}, WorkingPrecision -> 110]
|
|
PROG
|
(PARI) a=1; b=1; c=3; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|