|
|
A072971
|
|
Least k such that the last digit of prime(n+k) = last digit of prime(n) in base 10.
|
|
2
|
|
|
3, 6, 3, 5, 2, 5, 7, 2, 3, 5, 2, 4, 5, 5, 2, 6, 6, 2, 2, 4, 5, 3, 6, 3, 3, 5, 8, 2, 4, 4, 1, 6, 6, 2, 2, 6, 4, 5, 1, 4, 4, 4, 4, 6, 3, 6, 2, 5, 5, 1, 4, 4, 5, 13, 2, 4, 4, 1, 3, 3, 3, 6, 2, 12, 1, 4, 2, 3, 3, 5, 2, 2, 8, 3, 10, 3, 1, 4, 1, 6, 2, 2, 4, 5, 3, 5, 6, 2, 3, 8, 4, 2, 3, 7, 2, 4, 5, 1, 4, 5, 5, 5, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,1
|
|
COMMENTS
|
Let S(n) = Sum_{k=4..n} a(k). Is the sequence of integers b(m) such that S(b(m)) > 4*b(m) finite? The first 3 terms are b(1)=794, b(2)=795, and b(3)= 1326. Is -4 <= 4*n-S(n) <= 13 always true? Is a(n) bounded?
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 4..10000
|
|
FORMULA
|
Probably lim_{n -> infinity} S(n)/n = lim_{n -> infinity} (1/n)*Sum_{k=4..n} a(k) = 4.
|
|
PROG
|
(PARI) a(n)=if(n<0, 0, k=1; while(abs(prime(k+n)%10-prime(n)%10)>0, k++); k)
|
|
CROSSREFS
|
Sequence in context: A111762 A185582 A201398 * A256681 A340704 A199951
Adjacent sequences: A072968 A072969 A072970 * A072972 A072973 A072974
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Benoit Cloitre, Aug 13 2002
|
|
EXTENSIONS
|
Edited by Jon E. Schoenfield, Jan 18 2020
|
|
STATUS
|
approved
|
|
|
|