login
A262163
Number A(n,k) of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
12
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 4, 5, 0, 1, 1, 2, 5, 16, 16, 0, 1, 1, 2, 5, 19, 54, 61, 0, 1, 1, 2, 5, 20, 82, 324, 272, 0, 1, 1, 2, 5, 20, 86, 454, 1532, 1385, 0, 1, 1, 2, 5, 20, 87, 516, 2795, 12256, 7936, 0, 1, 1, 2, 5, 20, 87, 521, 3135, 20346, 74512, 50521, 0
OFFSET
0,13
LINKS
FORMULA
A(n,k) = Sum_{i=0..k} A258829(n,i).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, ...
0, 2, 4, 5, 5, 5, 5, 5, ...
0, 5, 16, 19, 20, 20, 20, 20, ...
0, 16, 54, 82, 86, 87, 87, 87, ...
0, 61, 324, 454, 516, 521, 522, 522, ...
0, 272, 1532, 2795, 3135, 3264, 3270, 3271, ...
MAPLE
b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, x^c,
(p-> add(coeff(p, x, i)*x^max(i, c), i=0..degree(p)))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
A:= (n, k)-> (p-> add(coeff(p, x, i), i=0..min(n, k)))(b(0, n, 0)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[u_, o_, c_] := b[u, o, c] = If[c < 0, 0, If[u + o == 0, x^c, Function[p, Sum[Coefficient[p, x, i]*x^Max[i, c], {i, 0, Exponent[p, x]}]][Sum[b[u - j, o - 1 + j, c - 1], {j, 1, u}] + Sum[b[u + j - 1, o - j, c + 1], {j, 1, o}]]]]; A[n_, k_] := Function[p, Sum[Coefficient[p, x, i], {i, 0, Min[n, k]}]][b[0, n, 0]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives: A258830.
Sequence in context: A339959 A255636 A292085 * A293112 A306910 A112185
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 13 2015
STATUS
approved