login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262166
Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value <= 4.
4
1, 1, 2, 5, 20, 86, 516, 3135, 25080, 196468, 1964680, 18827225, 225926700, 2559350288, 35830904032, 468385940355, 7494175045680, 111029569712844, 1998532254831192, 33092842524631733, 661856850492634660, 12113055891685809704, 266487229617087813488
OFFSET
0,3
LINKS
FORMULA
a(n) = A262163(n,4).
MAPLE
b:= proc(u, o, c) option remember; `if`(c<0 or c>4, 0, `if`(u+o=0,
x^c, (p-> add(coeff(p, x, i)*x^max(i, c), i=0..4))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
a:= n-> (p-> add(coeff(p, x, i), i=0..min(n, 4)))(b(0, n, 0)):
seq(a(n), n=0..25);
MATHEMATICA
b[u_, o_, c_] := b[u, o, c] = If[c < 0 || c > 4, 0, If[u + o == 0, x^c, Function[p, Sum[Coefficient[p, x, i]*x^Max[i, c], {i, 0, 4}]][Sum[b[u - j, o - 1 + j, c - 1], {j, u}] + Sum[b[u + j - 1, o - j, c + 1], {j, o}]]]];
a[n_] := Function[p, Sum[Coefficient[p, x, i], {i, 0, Min[n, 4]}]][b[0, n, 0]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 30 2021, after _Alois P. HeInz_ *)
CROSSREFS
Column k=4 of A262163.
Sequence in context: A006228 A363140 A190656 * A262167 A262168 A262169
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 13 2015
STATUS
approved