login
A255636
Number A(n,k) of n-node rooted trees with a forbidden limb of length k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
12
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 3, 4, 0, 1, 1, 2, 4, 7, 8, 0, 1, 1, 2, 4, 8, 15, 17, 0, 1, 1, 2, 4, 9, 18, 35, 36, 0, 1, 1, 2, 4, 9, 19, 43, 81, 79, 0, 1, 1, 2, 4, 9, 20, 46, 102, 195, 175, 0, 1, 1, 2, 4, 9, 20, 47, 110, 251, 473, 395, 0
OFFSET
1,13
COMMENTS
Any rootward k-node path starting at a leaf contains the root or a branching node.
LINKS
EXAMPLE
: o o o o o o o o
: /(|)\ | / \ /|\ | | / \ |
: o ooo o o o o o o o o o o o o
: /( )\ /|\ / \ | / \ | |
: o o o o o o o o o o o o o o
: /|\ / \ / \ |
: o o o o o o o o
: A(6,2) = 8 / \
: o o
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, 2, ...
0, 2, 3, 4, 4, 4, 4, 4, 4, 4, ...
0, 4, 7, 8, 9, 9, 9, 9, 9, 9, ...
0, 8, 15, 18, 19, 20, 20, 20, 20, 20, ...
0, 17, 35, 43, 46, 47, 48, 48, 48, 48, ...
0, 36, 81, 102, 110, 113, 114, 115, 115, 115, ...
0, 79, 195, 251, 273, 281, 284, 285, 286, 286, ...
0, 175, 473, 625, 684, 706, 714, 717, 718, 719, ...
MAPLE
with(numtheory):
g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
`if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
end:
A:= (n, k)-> g(n-1, k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
MATHEMATICA
g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[Sum[d*(g[d - 1, k] - If[d == k, 1, 0]), {d, Divisors[j]}]*g[n - j, k], {j, 1, n}]/n]; A[n_, k_] := g[n - 1, k]; Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives A000081.
Cf. A255704.
Sequence in context: A286653 A283308 A339959 * A292085 A262163 A293112
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 28 2015
STATUS
approved