login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262160
Expansion of psi(x^6) / psi(x) in powers of x where psi() is a Ramanujan theta function.
5
1, -1, 1, -2, 3, -4, 6, -8, 11, -15, 19, -25, 33, -42, 53, -68, 86, -107, 134, -166, 205, -253, 309, -377, 460, -557, 672, -811, 974, -1166, 1394, -1661, 1975, -2344, 2773, -3275, 3863, -4543, 5333, -6253, 7316, -8544, 9964, -11600, 13484, -15653, 18140
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/8) * eta(q) * eta(q^12)^2 / (eta(q^2)^2 * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ -1, 1, -1, 1, -1, 2, -1, 1, -1, 1, -1, 0, ...].
a(n) = (-1)^n * A132217(n).
Product_{k>0} (1 - x^(12*k)) * (1 - x^(2*k) + x^(4*k)) / (1 - (-x)^k). - Michael Somos, Oct 04 2015
EXAMPLE
G.f. = 1 - x + x^2 - 2*x^3 + 3*x^4 - 4*x^5 + 6*x^6 - 8*x^7 + 11*x^8 + ...
G.f. = q^5 - q^13 + q^21 - 2*q^29 + 3*q^37 - 4*q^45 + 6*q^53 - 8*q^61 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^(-5/8) EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^12 + A)^2 / (eta(x^2 + A)^2 * eta(x^6 + A)), n))};
CROSSREFS
Cf. A132217.
Sequence in context: A117995 A033834 A127419 * A132217 A265254 A303944
KEYWORD
sign
AUTHOR
Michael Somos, Sep 13 2015
STATUS
approved