OFFSET
1,5
COMMENTS
Also number of partitions of n in which the least part is 1 and if k is the largest part, then k>=2 and k-1 also occurs. Example: a(8)=6 because we have [4,3,1],[3,2,2,1],[3,2,1,1,1],[2,2,2,1,1],[2,2,1,1,1,1] and [2,1,1,1,1,1,1].
a(n+1) is the number of partitions of n such that m(greatest part) > m(1), where m = multiplicity, for n>= 0. For example, a(8) counts these 6 partitions of 7: 7, 52, 43, 331, 322, 2221. - Clark Kimberling, Apr 01 2014
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>=2} Sum_{j=1..k-1} x^(j+k)/Product_{i=j+1..k-1} (1-x^i).
G.f.: x^3/[(1-x)(1-x^2)] + Sum_{k>=3} x^(2k)/Product_{j=1..k} (1-x^j).
a(n) = A002865(n) - (n + 1) mod 2. - Seiichi Manyama, Jan 28 2022
EXAMPLE
a(8)=6 because we have [7,1],[6,2],[5,3],[5,2,1],[4,3,1] and [3,2,2,1].
MAPLE
g:=x^3/(1-x)/(1-x^2)+sum(x^(2*k)/product(1-x^j, j=1..k), k=3..70): gser:=series(g, x=0, 60): seq(coeff(gser, x, n), n=1..55);
MATHEMATICA
(See A240077.) - Clark Kimberling, Apr 01 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 08 2006
STATUS
approved