login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127419
Recurrence: a(n) = a(n-1) + floor( (sqrt(8 * a(n-1) - 7) - 1)/2 ) for n>=2 with a(0)=1, a(1)=2.
2
1, 2, 3, 4, 6, 8, 11, 15, 19, 24, 30, 37, 45, 53, 62, 72, 83, 95, 108, 122, 137, 153, 169, 186, 204, 223, 243, 264, 286, 309, 333, 358, 384, 411, 439, 468, 498, 529, 561, 593, 626, 660, 695, 731, 768, 806, 845, 885, 926, 968, 1011, 1055, 1100, 1146, 1193, 1241
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = (1-x+x^3)/(1-x)^3 - x^3/(1-x)^2 * Sum_{k>=0} x^(2^k + k-1).
a(n) satisfies: floor((sqrt(8*a(n) - 7) - 1)/2) = A103354(n) for n>=1, where A103354 = floor(x), where x is the solution to x = 2^(n-x).
EXAMPLE
floor( (sqrt(8 * a(n) - 7) - 1)/2 ) = A103354(n) for n>=0:
[0,1,1,2,2,3,4,4,5,6,7,8,8,9,10,11,12,13,14,15,16,16,17,...];
i.e. the nonnegative integers with powers of 2 repeated.
G.f.: A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 11*x^6 + ...
G.f.: A(x) = (1-x+x^3)/(1-x)^3 - x^3/(1-x)^2 * B(x) where B(x) = 1 + x^2 + x^5 + x^10 + x^19 + x^36 + x^69 +...+ x^(2^n+n-1) +...
MATHEMATICA
Join[{1}, NestList[#+Floor[(Sqrt[8#-7]-1)/2]&, 2, 60]] (* Harvey P. Dale, May 26 2023 *)
PROG
(PARI) /* Using G.f.: */
{a(n)=local(x=X+X*O(X^n)); polcoeff((1-x+x^3)/(1-x)^3 - x^3/(1-x)^2*(sum(k=0, #binary(n), x^(2^k+k-1))), n, X)}
(PARI) /* Using Recurrence: */
{a(n)=if(n==0, 1, if(n==1, 2, a(n-1)+(sqrtint(8*a(n-1)-7)-1)\2))}
CROSSREFS
Cf. A103354.
Sequence in context: A303663 A117995 A033834 * A262160 A132217 A265254
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 13 2007
STATUS
approved