login
A316392
Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of five.
2
1, 5, 129, 819, 16066, 127538, 2423226, 23367449, 459383574, 5246611332, 109138956326, 1446115120862, 32069014233249, 484780196858918, 11478459399841878, 195255855453716821, 4931560739013573590, 93326559046408832001, 2509294817575539112099
OFFSET
5,2
LINKS
FORMULA
a(n) = A262167(n) - A262166(n).
MAPLE
b:= proc(u, o, c, k) option remember;
`if`(c<0 or c>k, 0, `if`(u+o=0, 1,
add(b(u-j, o-1+j, c+1, k), j=1..u)+
add(b(u+j-1, o-j, c-1, k), j=1..o)))
end:
a:= n-> b(n, 0$2, 5)-b(n, 0$2, 4):
seq(a(n), n=5..23);
CROSSREFS
Column k=5 of A258829.
Sequence in context: A224250 A316986 A355085 * A277259 A230303 A094074
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 01 2018
STATUS
approved