login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258833
Nonhomogeneous Beatty sequence: ceiling((n + 1/4)*sqrt(2)).
4
1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 25, 26, 28, 29, 31, 32, 33, 35, 36, 38, 39, 40, 42, 43, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 72, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87, 89, 90, 91, 93
OFFSET
0,2
COMMENTS
Complement of A258834.
Let r = sqrt(2) and s = r/(r-1) = 2 + sqrt(2). Let R be the ordered set {floor[(n + 1/4)*r] : n is an integer} and let S be the ordered set {floor[(n - 1/4)*s : n is an integer}; thus,
R = (..., -8, -7, -5, -4, -2, -1, 1, 2, 3, 5, 6, ...)
S = (..., -13, -10, -6, -3, 0, 4, 7, 11, 14, ...).
By Fraenkel's theorem (Theorem XI in the cited paper); R and S partition the integers.
A184580 = (1,2,3,5,6,...), positive terms of R;
A184581 = (4,7,11,14,...), positive terms of S;
A258833 = (1,2,4,5,6,...), - (negative terms of R);
A258834 = (0,3,6,10,...), - (nonpositive terms of S).
A184580 and A184581 partition the positive integers, and A258833 and A248834 partition the nonnegative integers.
LINKS
A. S. Fraenkel, The bracket function and complementary sets of integers, Canadian J. of Math. 21 (1969) 6-27.
Clark Kimberling, Beatty sequences and trigonometric functions, Integers 16 (2016), #A15.
FORMULA
a(n) = ceiling((n + 1/4)*sqrt(2)) = floor((n + 1/4)*sqrt(2) + 1).
MATHEMATICA
r = Sqrt[2]; s = r/(r - 1);
Table[Ceiling[(n + 1/4) r], {n, 0, 100}] (* A258833 *)
Table[Ceiling[(n - 1/4) s], {n, 0, 100}] (* A258834 *)
PROG
(Magma) [Ceiling((n + 1/4)*Sqrt(2)): n in [0..80]]; // Vincenzo Librandi, Jun 13 2015
(PARI) for(n=0, 50, print1(ceil((n + 1/4)*sqrt(2)), ", ")) \\ G. C. Greubel, Feb 08 2018
CROSSREFS
Cf. A258834 (complement), A184580, A184581.
Sequence in context: A047381 A286428 A329996 * A097506 A189794 A001951
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 12 2015
STATUS
approved