|
|
A047381
|
|
Numbers that are congruent to {0, 1, 2, 4, 5} mod 7.
|
|
2
|
|
|
0, 1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 51, 53, 54, 56, 57, 58, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = a(n-1) + a(n-5) - a(n-6).
G.f.: x^2*(1 + x + 2*x^2 + x^3 + 2*x^4) / ((x^4 + x^3 + x^2 + x + 1)*(x-1)^2). (End)
5*a(n) = 7*n-9-b(n) where b(n) = b(n-5) = 1, -2, 0, 2, -1 (for offset 0). - R. J. Mathar, Jul 22 2020
|
|
MAPLE
|
seq(floor((7/5)*(n-1)), n=1..56); # Gary Detlefs, Feb 20 2010
|
|
MATHEMATICA
|
CoefficientList[Series[x (1 + x + 2 x^2 + x^3 + 2 x^4) / ((x^4 + x^3 + x^2 + x + 1) (x - 1)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Jul 26 2013 *)
|
|
PROG
|
(Magma) [ n: n in [1..80] | n mod 7 in [0, 1, 2, 4, 5] ]; // Vincenzo Librandi, Jul 26 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|