login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047380
Numbers that are congruent to {1, 2, 4, 5} mod 7.
6
1, 2, 4, 5, 8, 9, 11, 12, 15, 16, 18, 19, 22, 23, 25, 26, 29, 30, 32, 33, 36, 37, 39, 40, 43, 44, 46, 47, 50, 51, 53, 54, 57, 58, 60, 61, 64, 65, 67, 68, 71, 72, 74, 75, 78, 79, 81, 82, 85, 86, 88, 89, 92, 93, 95, 96, 99, 100, 102, 103, 106, 107, 109, 110
OFFSET
1,2
FORMULA
G.f.: x*(1+x+2*x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n - 11 - 3*i^(2*n) - (1+i)*i^(-n-1) - (1-i)*i^(n+1))/8 where i=sqrt(-1).
a(2n) = A047385(n), a(2n-1) = A047346(n). (End)
MAPLE
A047380:=n->(14*n-11-3*I^(2*n)-(1+I)*I^(-n-1)-(1-I)*I^(n+1))/8: seq(A047380(n), n=1..100); # Wesley Ivan Hurt, May 20 2016
MATHEMATICA
Table[(14n-11-3I^(2n)-(1+I)I^(-n-1)-(1-I)I^(n+1))/8, {n, 80}] (* Wesley Ivan Hurt, May 20 2016 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 2, 4, 5, 8}, 100] (* Harvey P. Dale, Jun 05 2016 *)
PROG
(PARI) a(n)=(n-1)\4*7+[5, 1, 2, 4][n%4+1] \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved