login
A047383
Numbers that are congruent to {1, 5} mod 7.
11
1, 5, 8, 12, 15, 19, 22, 26, 29, 33, 36, 40, 43, 47, 50, 54, 57, 61, 64, 68, 71, 75, 78, 82, 85, 89, 92, 96, 99, 103, 106, 110, 113, 117, 120, 124, 127, 131, 134, 138, 141, 145, 148, 152, 155, 159, 162, 166, 169
OFFSET
1,2
FORMULA
a(n) = ceiling((7*n+2)/2).
a(n) = 7*n - a(n-1) - 8 (with a(1)=1). - Vincenzo Librandi, Aug 05 2010
G.f.: x*(1+4*x+2*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(1)=1, a(2)=5, a(3)=8; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Dec 24 2012
From Wesley Ivan Hurt, Nov 10 2013: (Start)
a(n) = 4*n - floor((n-1)/2) - 3.
a(2*k-1) = 7*k-6, a(2*k) = 7*k-2. (End)
E.g.f.: 2 + ((14*x - 9)*exp(x) + exp(-x))/4. - David Lovler, Sep 01 2022
MAPLE
A047383:=n->((-1)^n+14*n-9)/4; seq(A047383(n), n=1..100); # Wesley Ivan Hurt, Nov 10 2013
MATHEMATICA
Flatten[(#+{1, 5})&/@(7Range[0, 25])] (* or *) LinearRecurrence[ {1, 1, -1}, {1, 5, 8}, 80] (* Harvey P. Dale, Dec 24 2012 *)
PROG
(PARI) a(n)=7*n\2-2 \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
Cf. A001106.
Sequence in context: A346308 A214858 A186276 * A322534 A314402 A133795
KEYWORD
nonn,easy
STATUS
approved