|
|
A096727
|
|
Expansion of eta(q)^8 / eta(q^2)^4 in powers of q.
|
|
17
|
|
|
1, -8, 24, -32, 24, -48, 96, -64, 24, -104, 144, -96, 96, -112, 192, -192, 24, -144, 312, -160, 144, -256, 288, -192, 96, -248, 336, -320, 192, -240, 576, -256, 24, -384, 432, -384, 312, -304, 480, -448, 144, -336, 768, -352, 288, -624, 576, -384, 96, -456, 744, -576, 336, -432, 960, -576, 192
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
K. S. Williams, The parents of Jacobi's four squares theorem are unique, Amer. Math. Monthly, 120 (2013), 329-345.
|
|
FORMULA
|
a(n) = -8*sigma(n) + 48*sigma(n/2) - 64*sigma(n/4) for n>0, where sigma(n) = A000203(n) if n is an integer, otherwise 0.
Euler transform of period 2 sequence [ -8, -4, ...].
G.f.: Prod_{k>0} (1 - x^k)^8 / (1 - x^(2k))^4 = 1 + Sum_{k>0} k * (-8 * x^k / (1 - x^k) + 48 * x^(2*k) /(1 - x^(2*k)) - 64 * x^(4*k)/(1 - x^(4*k))).
G.f. theta_4(q)^4 = (Sum_{k} (-q)^(k^2))^4.
Expansion of phi(-q)^4 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Nov 01 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^3), A(x^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w * (u + 9*w) - u*w * (u^2 + 9*w*u + 81*w^2).
a(n) = (-1)^n * A000118(n). a(n) = 8 * A109506(n) unless n=0. a(2*n) = A004011(n). a(2*n + 1) = -A005879(n).
a(0) = 1, a(n) = -(8/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. - Seiichi Manyama, May 02 2017
|
|
EXAMPLE
|
G.f. = 1 - 8*q + 24*q^2 - 32*q^3 + 24*q^4 - 48*q^5 + 96*q^6 - 64*q^7 + 24*q^8 - ...
|
|
MATHEMATICA
|
CoefficientList[ Series[1 + Sum[k(-8x^k/(1 - x^k) + 48x^(2k)/(1 - x^(2k)) - 64x^(4k)/(1 - x^(4k))), {k, 1, 60}], {x, 0, 60}], x] (* Robert G. Wilson v, Jul 14 2004 *)
a[ n_] := With[{m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ q Dt[ Log @ m, q], {q, 0, n}]]; (* Michael Somos, Sep 06 2012 *)
a[ n_] := (-1)^n SquaresR[ 4, n]; (* Michael Somos, Jun 12 2014 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^4, {q, 0, n}]; (* Michael Somos, Jun 12 2014 *)
QP = QPochhammer; s = QP[q]^8/QP[q^2]^4 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
|
|
PROG
|
(PARI) {a(n) = if( n<1, n==0, 8 * (-1)^n * sumdiv( n, d, if( d%4, d)))};
(PARI) {a(n) = local(A); if( n<0, 0, A = x *O (x^n); polcoeff( eta(x + A)^8 / eta(x^2 + A)^4, n))};
(Sage) A = ModularForms( Gamma0(4), 2, prec=57) . basis(); A[0] - 8*A[1]; # Michael Somos, Jun 12 2014
(MAGMA) A := Basis( ModularForms( Gamma0(4), 2), 57); A[1] - 8*A[2]; /* Michael Somos, Aug 21 2014 */
(Julia) # JacobiTheta4 is defined in A002448.
A096727List(len) = JacobiTheta4(len, 4)
A096727List(57) |> println # Peter Luschny, Mar 12 2018
|
|
CROSSREFS
|
Cf. A000118, A002131, A004011, A005879, A109506.
Sequence in context: A303796 A175368 A000118 * A028660 A028644 A227175
Adjacent sequences: A096724 A096725 A096726 * A096728 A096729 A096730
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Michael Somos, Jul 06 2004
|
|
STATUS
|
approved
|
|
|
|