login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109506
Expansion of (1 - phi(-q)^4)/ 8 in powers of q where phi() is a Ramanujan theta function.
11
1, -3, 4, -3, 6, -12, 8, -3, 13, -18, 12, -12, 14, -24, 24, -3, 18, -39, 20, -18, 32, -36, 24, -12, 31, -42, 40, -24, 30, -72, 32, -3, 48, -54, 48, -39, 38, -60, 56, -18, 42, -96, 44, -36, 78, -72, 48, -12, 57, -93, 72, -42, 54, -120, 72, -24, 80, -90, 60, -72, 62, -96, 104, -3, 84, -144, 68, -54, 96, -144, 72
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by xi(n) in Glaisher 1907. - Michael Somos, May 17 2013
REFERENCES
G. Chrystal, Algebra: An elementary text-book for the higher classes of secondary schools and for colleges, 6th ed, Chelsea Publishing Co., New York 1959 Part II, p. 346 Exercise XXI(18). MR0121327 (22 #12066).
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 8).
FORMULA
Expansion of (1 - eta(q)^8 / eta(q^2)^4) / 8 in powers of q.
a(n) = Sum_{d divides n} (-1)^(n/d + d) * d [Glaisher].
Multiplicative with a(2^e) = -3, if e>0. a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
G.f.: Sum_{k>0} k * (x^k / (1 - x^k) - 6 * x^(2*k) / (1 - x^(2*k)) + 8 * x^(4*k) / (1 - x^(4*k))).
G.f.: Sum_{k>0} -(-x)^k / (1 + x^k)^2 = Sum_{k>0} - k * (-x)^k / (1 + x^k).
a(n) = -(-1)^n * A046897(n). a(n) = -A096727(n) / 8 unless n=0. a(2*n) = -3 * A000593(n). a(2*n + 1) = A008438(n). a(4*n + 1) = A112610(n). a(4*n + 3) = A097723(n).
Dirichlet g.f.: (1 - 1/2^(s-2)) * (1 - 1/2^(s-1)) * zeta(s-1) * zeta(s). - Amiram Eldar, Sep 12 2023
EXAMPLE
q - 3*q^2 + 4*q^3 - 3*q^4 + 6*q^5 - 12*q^6 + 8*q^7 - 3*q^8 + 13*q^9 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, -(-1)^n Sum[ If[ Mod[ d, 4] == 0, 0, d], {d, Divisors@n}]] (* Michael Somos, May 17 2013 *)
PROG
(PARI) {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, if( d%4, d)))}
(PARI) {a(n) = local(A); if( n<1, 0, A = x * O(x^n); -1/8 * polcoeff( eta(x + A)^8 / eta(x^2 + A)^4, n))}
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Jun 30 2005
STATUS
approved