login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 - phi(-q)^4)/ 8 in powers of q where phi() is a Ramanujan theta function.
11

%I #28 Sep 12 2023 02:24:25

%S 1,-3,4,-3,6,-12,8,-3,13,-18,12,-12,14,-24,24,-3,18,-39,20,-18,32,-36,

%T 24,-12,31,-42,40,-24,30,-72,32,-3,48,-54,48,-39,38,-60,56,-18,42,-96,

%U 44,-36,78,-72,48,-12,57,-93,72,-42,54,-120,72,-24,80,-90,60,-72,62,-96,104,-3,84,-144,68,-54,96,-144,72

%N Expansion of (1 - phi(-q)^4)/ 8 in powers of q where phi() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Denoted by xi(n) in Glaisher 1907. - _Michael Somos_, May 17 2013

%D G. Chrystal, Algebra: An elementary text-book for the higher classes of secondary schools and for colleges, 6th ed, Chelsea Publishing Co., New York 1959 Part II, p. 346 Exercise XXI(18). MR0121327 (22 #12066).

%D J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 8).

%H Seiichi Manyama, <a href="/A109506/b109506.txt">Table of n, a(n) for n = 1..10000</a>

%H J. W. L. Glaisher, <a href="https://books.google.com/books?id=bLs9AQAAMAAJ&amp;pg=RA1-PA1">On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares</a>, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>.

%H <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>.

%F Expansion of (1 - eta(q)^8 / eta(q^2)^4) / 8 in powers of q.

%F a(n) = Sum_{d divides n} (-1)^(n/d + d) * d [Glaisher].

%F Multiplicative with a(2^e) = -3, if e>0. a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.

%F G.f.: Sum_{k>0} k * (x^k / (1 - x^k) - 6 * x^(2*k) / (1 - x^(2*k)) + 8 * x^(4*k) / (1 - x^(4*k))).

%F G.f.: Sum_{k>0} -(-x)^k / (1 + x^k)^2 = Sum_{k>0} - k * (-x)^k / (1 + x^k).

%F a(n) = -(-1)^n * A046897(n). a(n) = -A096727(n) / 8 unless n=0. a(2*n) = -3 * A000593(n). a(2*n + 1) = A008438(n). a(4*n + 1) = A112610(n). a(4*n + 3) = A097723(n).

%F Dirichlet g.f.: (1 - 1/2^(s-2)) * (1 - 1/2^(s-1)) * zeta(s-1) * zeta(s). - _Amiram Eldar_, Sep 12 2023

%e q - 3*q^2 + 4*q^3 - 3*q^4 + 6*q^5 - 12*q^6 + 8*q^7 - 3*q^8 + 13*q^9 + ...

%t a[ n_] := If[ n < 1, 0, -(-1)^n Sum[ If[ Mod[ d, 4] == 0, 0, d], {d, Divisors@n}]] (* _Michael Somos_, May 17 2013 *)

%o (PARI) {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, if( d%4, d)))}

%o (PARI) {a(n) = local(A); if( n<1, 0, A = x * O(x^n); -1/8 * polcoeff( eta(x + A)^8 / eta(x^2 + A)^4, n))}

%Y Cf. A000593, A008438, A046897, A096727, A112610.

%Y Cf. A000122, A000700, A010054, A121373.

%K sign,easy,mult

%O 1,2

%A _Michael Somos_, Jun 30 2005