login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166589 Totally multiplicative sequence with a(p) = p-3 for prime p. 18
1, -1, 0, 1, 2, 0, 4, -1, 0, -2, 8, 0, 10, -4, 0, 1, 14, 0, 16, 2, 0, -8, 20, 0, 4, -10, 0, 4, 26, 0, 28, -1, 0, -14, 8, 0, 34, -16, 0, -2, 38, 0, 40, 8, 0, -20, 44, 0, 16, -4, 0, 10, 50, 0, 16, -4, 0, -26, 56, 0, 58, -28, 0, 1, 20, 0, 64, 14, 0, -8, 68, 0
(list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
LINKS
FORMULA
Multiplicative with a(p^e) = (p-3)^e. If n = Product p(k)^e(k) then a(n) = Product (p(k)-3)^e(k). a(3k) = 0 for k >= 1. Abs (a(2^k)) = 1 for k >= 1.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (p*(p-1)/(p^2-p+3)) = 0.196347937547... . - Amiram Eldar, Jan 20 2024
MATHEMATICA
a[1] = 1; a[p_?PrimeQ] := p-3; a[n_] := Times @@ Power @@@ ({#[[1]]-3, #[[2]]}& /@ FactorInteger[n]); Array[a, 72] (* Jean-François Alcover, Jul 19 2017 *)
PROG
(PARI) a(n) = my(f=factor(n)); for (i=1, #f~, f[i, 1] -=3); factorback(f); \\ Michel Marcus, Jun 09 2014
CROSSREFS
Cf. A166586.
Sequence in context: A366907 A210444 A226949 * A332696 A360880 A255330
KEYWORD
sign,easy,mult
AUTHOR
Jaroslav Krizek, Oct 17 2009
EXTENSIONS
More terms from Michel Marcus, Jun 09 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 04:16 EDT 2024. Contains 376004 sequences. (Running on oeis4.)