login
A166588
Partial sums of A097331; binomial transform of A166587.
3
1, 2, 2, 3, 3, 5, 5, 10, 10, 24, 24, 66, 66, 198, 198, 627, 627, 2057, 2057, 6919, 6919, 23715, 23715, 82501, 82501, 290513, 290513, 1033413, 1033413, 3707853, 3707853, 13402698, 13402698, 48760368, 48760368, 178405158, 178405158, 656043858
OFFSET
0,2
COMMENTS
Hankel transform is A131713. The Hankel transform of the sequence 1,1,2,2,... is A128017(n+3). A155587 doubled.
LINKS
FORMULA
G.f.: (1+2x-sqrt(1-4x^2))/(2x(1-x))=((1+x^2*c(x^2))/(1-x)-1)/x, c(x) the g.f. of A000108.
a(n) = Sum_{k=0..n} C(n,k)*A166587(k).
Conjecture: (-n-1)*a(n) + (n+1)*a(n-1) + 4*(n-2)*a(n-2) + 4*(-n+2)*a(n-3) = 0. - R. J. Mathar, Nov 15 2012
a(n) ~ 2^(n+1/2) * (3-(-1)^n) / (3 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 08 2014
MATHEMATICA
CoefficientList[Series[(1+2*x-Sqrt[1-4*x^2])/(2*x*(1-x)), {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
CROSSREFS
Sequence in context: A000358 A032244 A342654 * A277321 A262365 A063988
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 17 2009
STATUS
approved