The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166587 A signed variant of the Motzkin numbers. 5
1, 1, -1, 2, -4, 9, -21, 51, -127, 323, -835, 2188, -5798, 15511, -41835, 113634, -310572, 853467, -2356779, 6536382, -18199284, 50852019, -142547559, 400763223, -1129760415, 3192727797, -9043402501, 25669818476, -73007772802 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Hankel transform is A131713. Binomial transform is A166588.
[a(n+1)] = [1,-1,2,-4,9,...] is the inverse binomial transform of A126120. - Philippe Deléham, Nov 29 2009
LINKS
FORMULA
G.f.: (1+3x-sqrt(1+2x-3x^2))/(2x); (1+3x)/(1+2x-x^2/(1+x-x^2/(1+x-x^2/(1+x-x^2/(1+...))))) (continued fraction).
a(n) = 0^n + Sum_{k=0..n} binomial(n-1, k-1)*(-3)^(n-k)*A000108(k).
G.f.: (1+3*x-sqrt(1+2*x-3*x^2))/(2x) = (3-1/G(0))/2 ; G(k) = 1+2*x/(1-x/(1-x/(1+2*x/(1+x/(2+x/G(k+1)))))) ; (continued fraction). - Sergei N. Gladkovskii, Dec 11 2011
Conjecture: n*(n+1)*a(n) + n*(n+1)*a(n-1) - (5*n-3)*(n-2)*a(n-2) + 3*(n-2)*(n-3)*a(n-3) = 0. - R. J. Mathar, Nov 15 2012
G.f. G(x) satisfies (3 x^2 - 2 x^2 - x) G'(x) - (x+1) G(x) + 3 x + 1 = 0, from which follows 3*n*a(n) + (-3-2*n)*a(1+n) + (-3-n)*a(n+2) = 0 as well as Mathar's conjecture. - Robert Israel, May 17 2016
E.g.f.: 1 + Integral (exp(-x) * BesselI(1,2*x) / x) dx. - Ilya Gutkovskiy, Jun 01 2020
EXAMPLE
G.f. = 1 + x - x^2 + 2*x^3 - 4*x^4 + 9*x^5 - 21*x^6 + 51*x^7 - 127*x^8 + ...
MAPLE
f:= gfun:-rectoproc({3*n*a(n)+(-3-2*n)*a(1+n)+(-3-n)*a(n+2)=0, a(0) = 1, a(1) = 1}, a(n), remember):
map(f, [$0..100]); # Robert Israel, May 17 2016
with(PolynomialTools): CoefficientList(convert(taylor((1 + 3*x - sqrt(1 + 2*x - 3*x^2))/2/x, x = 0, 33), polynom), x); # Taras Goy, Aug 07 2017
MATHEMATICA
CoefficientList[Series[(1 + 3*t - Sqrt[1 + 2*t - 3*t^2])/(2 t), {t, 0, 50}], t] (* G. C. Greubel, May 17 2016 *)
CROSSREFS
Sequence in context: A094287 A094288 A168051 * A292440 A168049 A001006
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 17 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 22:21 EDT 2024. Contains 373391 sequences. (Running on oeis4.)