login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292440
Expansion of (1 - x + sqrt(1 - 2*x - 3*x^2))/2 in powers of x.
3
1, -1, -1, -1, -2, -4, -9, -21, -51, -127, -323, -835, -2188, -5798, -15511, -41835, -113634, -310572, -853467, -2356779, -6536382, -18199284, -50852019, -142547559, -400763223, -1129760415, -3192727797, -9043402501, -25669818476, -73007772802
OFFSET
0,5
COMMENTS
Apart from a(1) the same as A168051. - R. J. Mathar, Sep 18 2017
LINKS
FORMULA
Convolution inverse of A001006.
Let f(x) = (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2).
G.f.: 1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(... (continued fraction).
G.f.: 1/f(x) = 1 - x - x^2*f(x).
a(n) = -A001006(n-2) for n > 1.
a(n) ~ -3^(n - 1/2) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 14 2018
D-finite with recurrence: n*a(n) +(-2*n+3)*a(n-1) +3*(-n+3)*a(n-2)=0. - R. J. Mathar, Jan 23 2020
MATHEMATICA
CoefficientList[Series[(1-x +Sqrt[1-2*x-3*x^2])/2, {x, 0, 50}], x] (* G. C. Greubel, Aug 13 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((1 - x + sqrt(1 - 2*x - 3*x^2))/2) \\ G. C. Greubel, Aug 13 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x +Sqrt(1-2*x-3*x^2))/2)); // G. C. Greubel, Aug 13 2018
CROSSREFS
Sequence in context: A094288 A168051 A166587 * A168049 A001006 A086246
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 16 2017
STATUS
approved